超声波辅助在碳布上沉积墨兰素和多壁碳纳米管:实现柔性超级电容器的可持续表面工程

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Molood Hoseinizadeh, Nila Davari, Abdelaziz Gouda, Hamza Hyat, Mohini Sain, Daria C. Boffito, Clara Santato
{"title":"超声波辅助在碳布上沉积墨兰素和多壁碳纳米管:实现柔性超级电容器的可持续表面工程","authors":"Molood Hoseinizadeh,&nbsp;Nila Davari,&nbsp;Abdelaziz Gouda,&nbsp;Hamza Hyat,&nbsp;Mohini Sain,&nbsp;Daria C. Boffito,&nbsp;Clara Santato","doi":"10.1002/adsu.202400302","DOIUrl":null,"url":null,"abstract":"<p>The rising global demand for energy requires, among others, sustainable energy storage devices. Biosourced redox-active molecules are interesting for eco-designed electrochemical energy storage as they increase the energy density of the electrodes adding the Faradaic (redox) storage mechanism to the electrostatic one. The engineering of the electrode surface and electrode surface/molecule interface is key to optimizing storage. Here, (i) electrodes prepared by ultrasound-assisted modification of carbon cloth in the presence of Sepia melanin, a quinone macromolecule, and multiwalled carbon nanotubes (MWCNTs) and (ii) their use in flexible symmetric electrochemical capacitors assembled with polyvinyl alcohol (PVA)-based hydrogel electrolyte is reported. Electrodes exhibit an areal capacitance as high as 274 mF cm<sup>−2</sup>. Corresponding semi-solid-state symmetric supercapacitors feature high energy density of 18 W<i>h</i> kg<sup>−1</sup>, power density up to 221 W kg<sup>−1</sup> (evaluated at 0.5 A g<sup>−1</sup>), outstanding cycling stability (100% capacitance retention, and 100% Coulombic efficiency after 10 000 cycles) along with excellent flexibility. This work contributes to the development of sustainable surface engineering approaches for environmentally benign electrochemical energy storage devices.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-Assisted Deposition of Sepia Melanin and Multiwalled Carbon Nanotubes on Carbon Cloth: Toward Sustainable Surface Engineering for Flexible Supercapacitors\",\"authors\":\"Molood Hoseinizadeh,&nbsp;Nila Davari,&nbsp;Abdelaziz Gouda,&nbsp;Hamza Hyat,&nbsp;Mohini Sain,&nbsp;Daria C. Boffito,&nbsp;Clara Santato\",\"doi\":\"10.1002/adsu.202400302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rising global demand for energy requires, among others, sustainable energy storage devices. Biosourced redox-active molecules are interesting for eco-designed electrochemical energy storage as they increase the energy density of the electrodes adding the Faradaic (redox) storage mechanism to the electrostatic one. The engineering of the electrode surface and electrode surface/molecule interface is key to optimizing storage. Here, (i) electrodes prepared by ultrasound-assisted modification of carbon cloth in the presence of Sepia melanin, a quinone macromolecule, and multiwalled carbon nanotubes (MWCNTs) and (ii) their use in flexible symmetric electrochemical capacitors assembled with polyvinyl alcohol (PVA)-based hydrogel electrolyte is reported. Electrodes exhibit an areal capacitance as high as 274 mF cm<sup>−2</sup>. Corresponding semi-solid-state symmetric supercapacitors feature high energy density of 18 W<i>h</i> kg<sup>−1</sup>, power density up to 221 W kg<sup>−1</sup> (evaluated at 0.5 A g<sup>−1</sup>), outstanding cycling stability (100% capacitance retention, and 100% Coulombic efficiency after 10 000 cycles) along with excellent flexibility. This work contributes to the development of sustainable surface engineering approaches for environmentally benign electrochemical energy storage devices.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"8 12\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400302\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400302","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球对能源的需求日益增长,这就需要可持续的储能设备。生物源氧化还原活性分子对生态设计的电化学储能很有意义,因为它们可以提高电极的能量密度,在静电储能机制之外增加法拉第(氧化还原)储能机制。电极表面和电极表面/分子界面的工程设计是优化储能的关键。本文报告了(i) 在醌类大分子 Sepia melanin 和多壁碳纳米管 (MWCNTs) 存在的情况下,通过超声辅助改性碳布制备的电极;(ii) 将其用于与聚乙烯醇 (PVA) 基水凝胶电解质组装的柔性对称电化学电容器。电极显示出高达 274 mF cm-2 的面积电容。相应的半固态对称超级电容器具有 18 Wh kg-1 的高能量密度、高达 221 W kg-1 的功率密度(按 0.5 A g-1 评估)、出色的循环稳定性(100% 的电容保持率和 10 000 次循环后 100% 的库仑效率)以及出色的灵活性。这项工作有助于开发可持续的表面工程方法,以制造对环境无害的电化学储能装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrasound-Assisted Deposition of Sepia Melanin and Multiwalled Carbon Nanotubes on Carbon Cloth: Toward Sustainable Surface Engineering for Flexible Supercapacitors

Ultrasound-Assisted Deposition of Sepia Melanin and Multiwalled Carbon Nanotubes on Carbon Cloth: Toward Sustainable Surface Engineering for Flexible Supercapacitors

The rising global demand for energy requires, among others, sustainable energy storage devices. Biosourced redox-active molecules are interesting for eco-designed electrochemical energy storage as they increase the energy density of the electrodes adding the Faradaic (redox) storage mechanism to the electrostatic one. The engineering of the electrode surface and electrode surface/molecule interface is key to optimizing storage. Here, (i) electrodes prepared by ultrasound-assisted modification of carbon cloth in the presence of Sepia melanin, a quinone macromolecule, and multiwalled carbon nanotubes (MWCNTs) and (ii) their use in flexible symmetric electrochemical capacitors assembled with polyvinyl alcohol (PVA)-based hydrogel electrolyte is reported. Electrodes exhibit an areal capacitance as high as 274 mF cm−2. Corresponding semi-solid-state symmetric supercapacitors feature high energy density of 18 Wh kg−1, power density up to 221 W kg−1 (evaluated at 0.5 A g−1), outstanding cycling stability (100% capacitance retention, and 100% Coulombic efficiency after 10 000 cycles) along with excellent flexibility. This work contributes to the development of sustainable surface engineering approaches for environmentally benign electrochemical energy storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信