{"title":"使用 SSR 标记对芝麻种质进行分子多样性研究和核心开发","authors":"Rasna Maurya, Shivani Singh, Yangala Sudheer Babu, Fatima Nazish Khan, Bhagwat Nawade, Harinder Vishwakarma, Ajay Kumar, Rashmi Yadav, Radhamani Jalli, Mahalingam Angamuthu, Mothilal Alagirisamy, Rajkumar Subramani, Senthilraja Govindasamy, Ashok Kumar, Kuldeep Singh, Parimalan Rangan","doi":"10.1007/s11105-024-01476-z","DOIUrl":null,"url":null,"abstract":"<p>Sesame (<i>Sesamum indicum</i> L.), an ancient oilseed crop being cultivated across geographical locations in the tropics, is known for its high-quality oil with a longer shelf life. India, being the center of diversity for this crop, understanding the genetic variability of sesame germplasm being conserved in the national Genebank (NGB) of ICAR-NBPGR, will help identify genotypes for its potential use in broadening the genetic base of the cultivars for sesame crop improvement. We report here the molecular diversity analysis performed using SSR markers on a set of 2,496 sesame germplasm. Hence, the derived data was also subjected to population structure analysis, and a molecular core was generated to assess its phenotypic variability. Parallelly, they were phenotypically characterized for important qualitative and quantitative traits as per the standard descriptor developed by IPGRI, and accessions exhibiting desirable traits were identified. The sesame germplasm used in our study represents collections from 17 countries across the globe and 26 states in India. A total of 140 alleles were obtained using seven polymorphic SSR markers selected from an initial screening comprising 43 SSR markers. The observed heterozygosity was less than the expected heterozygosity since it is a self-pollinated crop (up to 35% outcrossing is reported, categorized as often cross-pollinated). The molecular diversity analysis grouped 2496 accessions into six clusters, while the population structure analysis grouped them into three major clusters or populations. A molecular core developed using the PowerCore software identified 196 accessions, representing all the alleles from the entire 2496 accessions, that can be utilized in breeding programs after phenotypic validation. This study contributes to genetic diversity assessment for sesame germplasm, identifying genetically diverse accessions, and establishing a core set that encapsulates the genetic variability of the sesame germplasm collection. These findings hold relevance for addressing agricultural challenges and enhancing the resilience and productivity of sesame crops in various environmental conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Diversity Studies and Core Development in Sesame Germplasm (Sesamum indicum L.) Using SSR Markers\",\"authors\":\"Rasna Maurya, Shivani Singh, Yangala Sudheer Babu, Fatima Nazish Khan, Bhagwat Nawade, Harinder Vishwakarma, Ajay Kumar, Rashmi Yadav, Radhamani Jalli, Mahalingam Angamuthu, Mothilal Alagirisamy, Rajkumar Subramani, Senthilraja Govindasamy, Ashok Kumar, Kuldeep Singh, Parimalan Rangan\",\"doi\":\"10.1007/s11105-024-01476-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sesame (<i>Sesamum indicum</i> L.), an ancient oilseed crop being cultivated across geographical locations in the tropics, is known for its high-quality oil with a longer shelf life. India, being the center of diversity for this crop, understanding the genetic variability of sesame germplasm being conserved in the national Genebank (NGB) of ICAR-NBPGR, will help identify genotypes for its potential use in broadening the genetic base of the cultivars for sesame crop improvement. We report here the molecular diversity analysis performed using SSR markers on a set of 2,496 sesame germplasm. Hence, the derived data was also subjected to population structure analysis, and a molecular core was generated to assess its phenotypic variability. Parallelly, they were phenotypically characterized for important qualitative and quantitative traits as per the standard descriptor developed by IPGRI, and accessions exhibiting desirable traits were identified. The sesame germplasm used in our study represents collections from 17 countries across the globe and 26 states in India. A total of 140 alleles were obtained using seven polymorphic SSR markers selected from an initial screening comprising 43 SSR markers. The observed heterozygosity was less than the expected heterozygosity since it is a self-pollinated crop (up to 35% outcrossing is reported, categorized as often cross-pollinated). The molecular diversity analysis grouped 2496 accessions into six clusters, while the population structure analysis grouped them into three major clusters or populations. A molecular core developed using the PowerCore software identified 196 accessions, representing all the alleles from the entire 2496 accessions, that can be utilized in breeding programs after phenotypic validation. This study contributes to genetic diversity assessment for sesame germplasm, identifying genetically diverse accessions, and establishing a core set that encapsulates the genetic variability of the sesame germplasm collection. These findings hold relevance for addressing agricultural challenges and enhancing the resilience and productivity of sesame crops in various environmental conditions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11105-024-01476-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01476-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular Diversity Studies and Core Development in Sesame Germplasm (Sesamum indicum L.) Using SSR Markers
Sesame (Sesamum indicum L.), an ancient oilseed crop being cultivated across geographical locations in the tropics, is known for its high-quality oil with a longer shelf life. India, being the center of diversity for this crop, understanding the genetic variability of sesame germplasm being conserved in the national Genebank (NGB) of ICAR-NBPGR, will help identify genotypes for its potential use in broadening the genetic base of the cultivars for sesame crop improvement. We report here the molecular diversity analysis performed using SSR markers on a set of 2,496 sesame germplasm. Hence, the derived data was also subjected to population structure analysis, and a molecular core was generated to assess its phenotypic variability. Parallelly, they were phenotypically characterized for important qualitative and quantitative traits as per the standard descriptor developed by IPGRI, and accessions exhibiting desirable traits were identified. The sesame germplasm used in our study represents collections from 17 countries across the globe and 26 states in India. A total of 140 alleles were obtained using seven polymorphic SSR markers selected from an initial screening comprising 43 SSR markers. The observed heterozygosity was less than the expected heterozygosity since it is a self-pollinated crop (up to 35% outcrossing is reported, categorized as often cross-pollinated). The molecular diversity analysis grouped 2496 accessions into six clusters, while the population structure analysis grouped them into three major clusters or populations. A molecular core developed using the PowerCore software identified 196 accessions, representing all the alleles from the entire 2496 accessions, that can be utilized in breeding programs after phenotypic validation. This study contributes to genetic diversity assessment for sesame germplasm, identifying genetically diverse accessions, and establishing a core set that encapsulates the genetic variability of the sesame germplasm collection. These findings hold relevance for addressing agricultural challenges and enhancing the resilience and productivity of sesame crops in various environmental conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.