{"title":"陆地表面反照率昼夜变化的不对称性及其对日平均反照率估算的影响","authors":"Yuan Han, Jianguang Wen, Qing Xiao, Dongqin You, Lei Meng, Shengbiao Wu, Dalei Hao, Yong Tang, Xi Chen, Qinhuo Liu, Congcong Zhao","doi":"10.1029/2023JD039728","DOIUrl":null,"url":null,"abstract":"<p>Daily mean albedo, a crucial variable of the earth radiation budget, is significantly affected by the diurnal variation of land surface albedo (DVLSA). The DVLSA typically exhibits asymmetry, thereby affecting the estimation of the daily mean albedo. However, the asymmetry in the DVLSA is generally ignored in daily mean albedo estimation. In this study, we investigated the influencing factors of the asymmetry in the DVLSA and evaluated its impacts on estimating the daily mean albedo based on field observations and simulated data. Our findings reveal that the asymmetry in the DVLSA varies among land cover types, with forests exhibiting more pronounced asymmetry compared to croplands, grasslands, and bare soil. The diurnal variation of the atmospheric conditions is the primary factor controlling the asymmetry in the DVLSA, with that of land surface conditions being a secondary factor. Neglecting the asymmetry in the DVLSA leads to estimation error in daily mean albedo, particularly pronounced during winter. The relative error of daily mean albedo can exceed 10% when the mean asymmetry index of diffuse irradiance fraction reaches 40%. However, the DVLSA retrieved from the satellite Bidirectional Reflectance Distribution Function product inadequately captures asymmetry, resulting in a relative error of approximately 13.7% in estimating daily mean albedo.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetry in the Diurnal Variation of Land Surface Albedo and Its Impacts on Daily Mean Albedo Estimation\",\"authors\":\"Yuan Han, Jianguang Wen, Qing Xiao, Dongqin You, Lei Meng, Shengbiao Wu, Dalei Hao, Yong Tang, Xi Chen, Qinhuo Liu, Congcong Zhao\",\"doi\":\"10.1029/2023JD039728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Daily mean albedo, a crucial variable of the earth radiation budget, is significantly affected by the diurnal variation of land surface albedo (DVLSA). The DVLSA typically exhibits asymmetry, thereby affecting the estimation of the daily mean albedo. However, the asymmetry in the DVLSA is generally ignored in daily mean albedo estimation. In this study, we investigated the influencing factors of the asymmetry in the DVLSA and evaluated its impacts on estimating the daily mean albedo based on field observations and simulated data. Our findings reveal that the asymmetry in the DVLSA varies among land cover types, with forests exhibiting more pronounced asymmetry compared to croplands, grasslands, and bare soil. The diurnal variation of the atmospheric conditions is the primary factor controlling the asymmetry in the DVLSA, with that of land surface conditions being a secondary factor. Neglecting the asymmetry in the DVLSA leads to estimation error in daily mean albedo, particularly pronounced during winter. The relative error of daily mean albedo can exceed 10% when the mean asymmetry index of diffuse irradiance fraction reaches 40%. However, the DVLSA retrieved from the satellite Bidirectional Reflectance Distribution Function product inadequately captures asymmetry, resulting in a relative error of approximately 13.7% in estimating daily mean albedo.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JD039728\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JD039728","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Asymmetry in the Diurnal Variation of Land Surface Albedo and Its Impacts on Daily Mean Albedo Estimation
Daily mean albedo, a crucial variable of the earth radiation budget, is significantly affected by the diurnal variation of land surface albedo (DVLSA). The DVLSA typically exhibits asymmetry, thereby affecting the estimation of the daily mean albedo. However, the asymmetry in the DVLSA is generally ignored in daily mean albedo estimation. In this study, we investigated the influencing factors of the asymmetry in the DVLSA and evaluated its impacts on estimating the daily mean albedo based on field observations and simulated data. Our findings reveal that the asymmetry in the DVLSA varies among land cover types, with forests exhibiting more pronounced asymmetry compared to croplands, grasslands, and bare soil. The diurnal variation of the atmospheric conditions is the primary factor controlling the asymmetry in the DVLSA, with that of land surface conditions being a secondary factor. Neglecting the asymmetry in the DVLSA leads to estimation error in daily mean albedo, particularly pronounced during winter. The relative error of daily mean albedo can exceed 10% when the mean asymmetry index of diffuse irradiance fraction reaches 40%. However, the DVLSA retrieved from the satellite Bidirectional Reflectance Distribution Function product inadequately captures asymmetry, resulting in a relative error of approximately 13.7% in estimating daily mean albedo.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.