Lei Yin, Zhigang Zhu, Jialong Fu, Chuanbin Zhou, Zhaochao Liu, Yuxia Li, Zhenglong Luo, Yongyun Zhu, Zhong Xu, Xinglong Yang
{"title":"帕金森病运动亚型之间灰质萎缩和功能连接的差异","authors":"Lei Yin, Zhigang Zhu, Jialong Fu, Chuanbin Zhou, Zhaochao Liu, Yuxia Li, Zhenglong Luo, Yongyun Zhu, Zhong Xu, Xinglong Yang","doi":"10.1007/s13760-024-02610-0","DOIUrl":null,"url":null,"abstract":"<p>Parkinson’s disease (PD) patients with postural gait abnormalities exhibit poorer motor function scores, more severe non-motor symptoms, faster cognitive function deterioration, and a less favorable response to drugs and surgery compared to PD patients with tremor. This discrepancy is believed to be associated with more pronounced gray matter atrophy and abnormal functional connectivity. To investigate the distinctive pathological mechanisms between PD subtypes, we examined gray matter volume (GMV) and functional connectivity in patients with Parkinson’s disease presenting with postural instability/gait difficulty (PD-PIGD), patients with tremor-dominant Parkinson’s disease (PD-TD), and healthy controls. Voxel-based morphometry (VBM) of T1-weighted images was conducted to compare GMV among 64 PD-PIGD patients, 44 PD-TD patients, and 32 controls. Subsequently, functional connectivity within regions showing reduced GMV was compared across the groups. We analyzed whether differences among the groups were associated with clinical characteristics and neuroimaging biomarkers using partial correlation and binary logistic regression. Our comparison between PD-PIGD and PD-TD patients revealed a link between PD-PIGD and more extensive frontotemporal atrophy, potentially indicating increased basal ganglia activity accompanied by decreased cerebellum activity. Furthermore, in addition to the smaller GMV in the left middle temporal gyrus, the increased functional connectivity between this brain region and the right caudate was also the independent risk factor for PD-PIGD. In addition, we compared brain network connectivity between the PIGD and TD subtypes, using an independent component analysis (ICA). We found that Compared to PD-TD, PD-PIGD patients showed an enhanced sensorimotor network (SMN) around the left supplementary motor area. These findings suggest that severe gray matter atrophy and abnormal functional connectivity and brain networks may serve as pathophysiological mechanisms distinguishing PD-PIGD patients from other subtypes.</p>","PeriodicalId":7042,"journal":{"name":"Acta neurologica Belgica","volume":"23 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differences in gray matter atrophy and functional connectivity between motor subtypes of Parkinson’s disease\",\"authors\":\"Lei Yin, Zhigang Zhu, Jialong Fu, Chuanbin Zhou, Zhaochao Liu, Yuxia Li, Zhenglong Luo, Yongyun Zhu, Zhong Xu, Xinglong Yang\",\"doi\":\"10.1007/s13760-024-02610-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Parkinson’s disease (PD) patients with postural gait abnormalities exhibit poorer motor function scores, more severe non-motor symptoms, faster cognitive function deterioration, and a less favorable response to drugs and surgery compared to PD patients with tremor. This discrepancy is believed to be associated with more pronounced gray matter atrophy and abnormal functional connectivity. To investigate the distinctive pathological mechanisms between PD subtypes, we examined gray matter volume (GMV) and functional connectivity in patients with Parkinson’s disease presenting with postural instability/gait difficulty (PD-PIGD), patients with tremor-dominant Parkinson’s disease (PD-TD), and healthy controls. Voxel-based morphometry (VBM) of T1-weighted images was conducted to compare GMV among 64 PD-PIGD patients, 44 PD-TD patients, and 32 controls. Subsequently, functional connectivity within regions showing reduced GMV was compared across the groups. We analyzed whether differences among the groups were associated with clinical characteristics and neuroimaging biomarkers using partial correlation and binary logistic regression. Our comparison between PD-PIGD and PD-TD patients revealed a link between PD-PIGD and more extensive frontotemporal atrophy, potentially indicating increased basal ganglia activity accompanied by decreased cerebellum activity. Furthermore, in addition to the smaller GMV in the left middle temporal gyrus, the increased functional connectivity between this brain region and the right caudate was also the independent risk factor for PD-PIGD. In addition, we compared brain network connectivity between the PIGD and TD subtypes, using an independent component analysis (ICA). We found that Compared to PD-TD, PD-PIGD patients showed an enhanced sensorimotor network (SMN) around the left supplementary motor area. These findings suggest that severe gray matter atrophy and abnormal functional connectivity and brain networks may serve as pathophysiological mechanisms distinguishing PD-PIGD patients from other subtypes.</p>\",\"PeriodicalId\":7042,\"journal\":{\"name\":\"Acta neurologica Belgica\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta neurologica Belgica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13760-024-02610-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurologica Belgica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13760-024-02610-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Differences in gray matter atrophy and functional connectivity between motor subtypes of Parkinson’s disease
Parkinson’s disease (PD) patients with postural gait abnormalities exhibit poorer motor function scores, more severe non-motor symptoms, faster cognitive function deterioration, and a less favorable response to drugs and surgery compared to PD patients with tremor. This discrepancy is believed to be associated with more pronounced gray matter atrophy and abnormal functional connectivity. To investigate the distinctive pathological mechanisms between PD subtypes, we examined gray matter volume (GMV) and functional connectivity in patients with Parkinson’s disease presenting with postural instability/gait difficulty (PD-PIGD), patients with tremor-dominant Parkinson’s disease (PD-TD), and healthy controls. Voxel-based morphometry (VBM) of T1-weighted images was conducted to compare GMV among 64 PD-PIGD patients, 44 PD-TD patients, and 32 controls. Subsequently, functional connectivity within regions showing reduced GMV was compared across the groups. We analyzed whether differences among the groups were associated with clinical characteristics and neuroimaging biomarkers using partial correlation and binary logistic regression. Our comparison between PD-PIGD and PD-TD patients revealed a link between PD-PIGD and more extensive frontotemporal atrophy, potentially indicating increased basal ganglia activity accompanied by decreased cerebellum activity. Furthermore, in addition to the smaller GMV in the left middle temporal gyrus, the increased functional connectivity between this brain region and the right caudate was also the independent risk factor for PD-PIGD. In addition, we compared brain network connectivity between the PIGD and TD subtypes, using an independent component analysis (ICA). We found that Compared to PD-TD, PD-PIGD patients showed an enhanced sensorimotor network (SMN) around the left supplementary motor area. These findings suggest that severe gray matter atrophy and abnormal functional connectivity and brain networks may serve as pathophysiological mechanisms distinguishing PD-PIGD patients from other subtypes.
期刊介绍:
Peer-reviewed and published quarterly, Acta Neurologica Belgicapresents original articles in the clinical and basic neurosciences, and also reports the proceedings and the abstracts of the scientific meetings of the different partner societies. The contents include commentaries, editorials, review articles, case reports, neuro-images of interest, book reviews and letters to the editor.
Acta Neurologica Belgica is the official journal of the following national societies:
Belgian Neurological Society
Belgian Society for Neuroscience
Belgian Society of Clinical Neurophysiology
Belgian Pediatric Neurology Society
Belgian Study Group of Multiple Sclerosis
Belgian Stroke Council
Belgian Headache Society
Belgian Study Group of Neuropathology