Doaa S. Mahmoud, Amira Nassar, A. M. Moustafa, A. A. Ward, Wael S. Mohamed, Salwa H. El-Sabbagh
{"title":"基于加入铜基合金的极性弹性体的橡胶复合材料的电气和机械性能","authors":"Doaa S. Mahmoud, Amira Nassar, A. M. Moustafa, A. A. Ward, Wael S. Mohamed, Salwa H. El-Sabbagh","doi":"10.1007/s00289-024-05392-w","DOIUrl":null,"url":null,"abstract":"<div><p>Dielectric elastomers with conducting inorganic fillers offer a wide range of uses, including capacitive energy storage, elastomer sensors, actuators, and many more. In this approach, low dielectric loss and high dielectric constant may be made possible by ternary composites that use metal alloy components as reinforcing fillers. Here, Cu-based alloy was added to acrylonitrile-butadiene rubber (NBR) to produce ternary rubber composites. Unfortunately, the Cu–Al–Zn alloy’s material incompatibility with the rubber matrix typically leads to phase separation, void formation, and particle aggregation, all of which have a dramatic negative impact on performance. Using 3-(trimethoxysilyl)propyl methacrylate as a coupling agent, Cu–Al–Zn alloy particles were uniformly dispersed onto the NBR rubber matrix through surface modification. By using scanning electron microscopy, the appropriate reinforcement of modified Cu-based alloy particles into NBR was carefully examined. The effect of modified Cu–Al–Zn alloy loading on the swelling behavior of the composite was also investigated. The findings show that the shape and dispersion state of modified Cu–Al–Zn alloy were important for the dielectric characteristics of the NBR compounds. By adding reinforced modified Cu-based alloy to the NBR matrix, mechanical characteristics were significantly improved. The uniform dispersion of modified Cu–Al–Zn alloy particles and strong interfacial compatibility with rubber matrix are the reasons for the outstanding performance of NBR composites, which suggests high-performance dielectric composite.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 16","pages":"15207 - 15234"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00289-024-05392-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrical and mechanical behaviors of rubber composites based on polar elastomers with incorporated Cu-based alloy\",\"authors\":\"Doaa S. Mahmoud, Amira Nassar, A. M. Moustafa, A. A. Ward, Wael S. Mohamed, Salwa H. El-Sabbagh\",\"doi\":\"10.1007/s00289-024-05392-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dielectric elastomers with conducting inorganic fillers offer a wide range of uses, including capacitive energy storage, elastomer sensors, actuators, and many more. In this approach, low dielectric loss and high dielectric constant may be made possible by ternary composites that use metal alloy components as reinforcing fillers. Here, Cu-based alloy was added to acrylonitrile-butadiene rubber (NBR) to produce ternary rubber composites. Unfortunately, the Cu–Al–Zn alloy’s material incompatibility with the rubber matrix typically leads to phase separation, void formation, and particle aggregation, all of which have a dramatic negative impact on performance. Using 3-(trimethoxysilyl)propyl methacrylate as a coupling agent, Cu–Al–Zn alloy particles were uniformly dispersed onto the NBR rubber matrix through surface modification. By using scanning electron microscopy, the appropriate reinforcement of modified Cu-based alloy particles into NBR was carefully examined. The effect of modified Cu–Al–Zn alloy loading on the swelling behavior of the composite was also investigated. The findings show that the shape and dispersion state of modified Cu–Al–Zn alloy were important for the dielectric characteristics of the NBR compounds. By adding reinforced modified Cu-based alloy to the NBR matrix, mechanical characteristics were significantly improved. The uniform dispersion of modified Cu–Al–Zn alloy particles and strong interfacial compatibility with rubber matrix are the reasons for the outstanding performance of NBR composites, which suggests high-performance dielectric composite.</p></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"81 16\",\"pages\":\"15207 - 15234\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00289-024-05392-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-024-05392-w\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05392-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Electrical and mechanical behaviors of rubber composites based on polar elastomers with incorporated Cu-based alloy
Dielectric elastomers with conducting inorganic fillers offer a wide range of uses, including capacitive energy storage, elastomer sensors, actuators, and many more. In this approach, low dielectric loss and high dielectric constant may be made possible by ternary composites that use metal alloy components as reinforcing fillers. Here, Cu-based alloy was added to acrylonitrile-butadiene rubber (NBR) to produce ternary rubber composites. Unfortunately, the Cu–Al–Zn alloy’s material incompatibility with the rubber matrix typically leads to phase separation, void formation, and particle aggregation, all of which have a dramatic negative impact on performance. Using 3-(trimethoxysilyl)propyl methacrylate as a coupling agent, Cu–Al–Zn alloy particles were uniformly dispersed onto the NBR rubber matrix through surface modification. By using scanning electron microscopy, the appropriate reinforcement of modified Cu-based alloy particles into NBR was carefully examined. The effect of modified Cu–Al–Zn alloy loading on the swelling behavior of the composite was also investigated. The findings show that the shape and dispersion state of modified Cu–Al–Zn alloy were important for the dielectric characteristics of the NBR compounds. By adding reinforced modified Cu-based alloy to the NBR matrix, mechanical characteristics were significantly improved. The uniform dispersion of modified Cu–Al–Zn alloy particles and strong interfacial compatibility with rubber matrix are the reasons for the outstanding performance of NBR composites, which suggests high-performance dielectric composite.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."