Mattia Turetta, Alberto Bertucco, Filippo Briani, Elena Barbera
{"title":"对渗透辅助反渗透中的螺旋缠绕模块进行试验性评估","authors":"Mattia Turetta, Alberto Bertucco, Filippo Briani, Elena Barbera","doi":"10.1002/ceat.202300553","DOIUrl":null,"url":null,"abstract":"<p>The osmotically assisted reverse osmosis (OARO) process is gaining attention for cost-effective aqueous solution concentration. However, there is a lack of pilot-scale studies. This research used two spiral-wound modules in a pilot-scale plant. The first one, an adapted commercial reverse osmosis module, showed no positive results, likely due to excessive membrane thickness and high internal concentration polarization. In contrast, the second one consisting of a novel forward osmosis prototype demonstrated promising outcomes, achieving water fluxes exceeding 2 L m<sup>−2</sup> h<sup>−1</sup> even at high salt concentrations (50 g L<sup>−1</sup>) and relatively low applied pressures (above 12 bar). The study highlights OARO potential, underscores limitations, and emphasizes the need for dedicated module design.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pilot-Scale Evaluation of Spiral-Wound Modules in Osmotically Assisted Reverse Osmosis\",\"authors\":\"Mattia Turetta, Alberto Bertucco, Filippo Briani, Elena Barbera\",\"doi\":\"10.1002/ceat.202300553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The osmotically assisted reverse osmosis (OARO) process is gaining attention for cost-effective aqueous solution concentration. However, there is a lack of pilot-scale studies. This research used two spiral-wound modules in a pilot-scale plant. The first one, an adapted commercial reverse osmosis module, showed no positive results, likely due to excessive membrane thickness and high internal concentration polarization. In contrast, the second one consisting of a novel forward osmosis prototype demonstrated promising outcomes, achieving water fluxes exceeding 2 L m<sup>−2</sup> h<sup>−1</sup> even at high salt concentrations (50 g L<sup>−1</sup>) and relatively low applied pressures (above 12 bar). The study highlights OARO potential, underscores limitations, and emphasizes the need for dedicated module design.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300553\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300553","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Pilot-Scale Evaluation of Spiral-Wound Modules in Osmotically Assisted Reverse Osmosis
The osmotically assisted reverse osmosis (OARO) process is gaining attention for cost-effective aqueous solution concentration. However, there is a lack of pilot-scale studies. This research used two spiral-wound modules in a pilot-scale plant. The first one, an adapted commercial reverse osmosis module, showed no positive results, likely due to excessive membrane thickness and high internal concentration polarization. In contrast, the second one consisting of a novel forward osmosis prototype demonstrated promising outcomes, achieving water fluxes exceeding 2 L m−2 h−1 even at high salt concentrations (50 g L−1) and relatively low applied pressures (above 12 bar). The study highlights OARO potential, underscores limitations, and emphasizes the need for dedicated module design.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.