{"title":"比较大肠杆菌对不同粒径和表面涂层的银纳米粒子的反应","authors":"Qiuran Liu, Yuqiong Sun, Mengmeng Zhang, Jing Hou","doi":"10.1002/ppsc.202400105","DOIUrl":null,"url":null,"abstract":"AgNPs are widely used for their excellent antimicrobial properties, whereas the cytotoxicity they possess makes them an unignorable environmental problem. Considering the impact of particle size and surface coating on the antibacterial properties, four types of AgNPs are selected: citrate‐coated 20 nm (C20), polyvinylpyrrolidone‐coated 20 nm (P20), citrate‐coated 100 nm (C100), and polyvinylpyrrolidone‐coated 100 nm (P100) AgNPs. All four AgNPs significantly affect the ribosome pathway, with stronger binding of large and small subunits. 20 nm and 100 nm AgNPs both affected the biosynthesis and metabolism of several amino acids (including arginine, glycine, serine, threonine, glyoxylic acid, and dicarboxylic acid). P20 and C100 exposure affected bacterial chemotaxis and flagellar motility. This study preliminarily explained the response mechanism of <jats:italic>E. coli</jats:italic> to AgNPs with different properties, which provided a theoretical basis for predicting the response mechanism of <jats:italic>E. coli</jats:italic> to metal nanoparticles with similar properties.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Escherichia coli Responses to Different Silver Nanoparticles with Different Particle Sizes and Surface Coatings\",\"authors\":\"Qiuran Liu, Yuqiong Sun, Mengmeng Zhang, Jing Hou\",\"doi\":\"10.1002/ppsc.202400105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AgNPs are widely used for their excellent antimicrobial properties, whereas the cytotoxicity they possess makes them an unignorable environmental problem. Considering the impact of particle size and surface coating on the antibacterial properties, four types of AgNPs are selected: citrate‐coated 20 nm (C20), polyvinylpyrrolidone‐coated 20 nm (P20), citrate‐coated 100 nm (C100), and polyvinylpyrrolidone‐coated 100 nm (P100) AgNPs. All four AgNPs significantly affect the ribosome pathway, with stronger binding of large and small subunits. 20 nm and 100 nm AgNPs both affected the biosynthesis and metabolism of several amino acids (including arginine, glycine, serine, threonine, glyoxylic acid, and dicarboxylic acid). P20 and C100 exposure affected bacterial chemotaxis and flagellar motility. This study preliminarily explained the response mechanism of <jats:italic>E. coli</jats:italic> to AgNPs with different properties, which provided a theoretical basis for predicting the response mechanism of <jats:italic>E. coli</jats:italic> to metal nanoparticles with similar properties.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202400105\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400105","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Comparison of Escherichia coli Responses to Different Silver Nanoparticles with Different Particle Sizes and Surface Coatings
AgNPs are widely used for their excellent antimicrobial properties, whereas the cytotoxicity they possess makes them an unignorable environmental problem. Considering the impact of particle size and surface coating on the antibacterial properties, four types of AgNPs are selected: citrate‐coated 20 nm (C20), polyvinylpyrrolidone‐coated 20 nm (P20), citrate‐coated 100 nm (C100), and polyvinylpyrrolidone‐coated 100 nm (P100) AgNPs. All four AgNPs significantly affect the ribosome pathway, with stronger binding of large and small subunits. 20 nm and 100 nm AgNPs both affected the biosynthesis and metabolism of several amino acids (including arginine, glycine, serine, threonine, glyoxylic acid, and dicarboxylic acid). P20 and C100 exposure affected bacterial chemotaxis and flagellar motility. This study preliminarily explained the response mechanism of E. coli to AgNPs with different properties, which provided a theoretical basis for predicting the response mechanism of E. coli to metal nanoparticles with similar properties.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.