M. Thejaswini, V. Lakshmi Ranganatha, C. Mallikarjunaswamy, S. Pramila, G. Nagaraju
{"title":"用于光催化和电化学应用评估的 LiNiVO4 纳米粒子的生物合成","authors":"M. Thejaswini, V. Lakshmi Ranganatha, C. Mallikarjunaswamy, S. Pramila, G. Nagaraju","doi":"10.1007/s11581-024-05729-5","DOIUrl":null,"url":null,"abstract":"<p>In this present work, lithium nickel vanadate nanoparticles (LiNiVO<sub>4</sub> NPs) were synthesized by solution combustion method. Here, jackfruit seed extract is employed as a fuel for the synthesis. These nanoparticles were characterized by various spectroscopic techniques. X-ray diffraction (XRD) studies confirm the inverse spinel structure of LiNiVO<sub>4</sub> NPs. The scanning electron microscopy (SEM) images represent the agglomerated and clustered-like structure of NPs. Energy dispersive X-ray (EDX) spectrometry shows the existence of vanadium, nickel, and oxygen elements. Also, Ni and V are present in the average ratio of 1:1. The UV–visible spectral analysis indicated absorption bands at 465 and 728 nm, corresponding to a band gap energy of 2.2 eV. The vibrational analysis of the NPs was confirmed through IR and Raman spectroscopy, with a new peak observed at 1036 cm<sup>−1</sup> indicating the bond interaction of Li<sup>+</sup>-O-V in the FTIR analysis. Further, LiNiVO<sub>4</sub> NPs exhibit good photocatalytic activity for the degradation of methylene blue (MB) dye under visible light irradiation. And the percentage of degradation efficiency is 91.77 around 180 min. The photocatalytic activity was due to the production of OH radicals during photo irradiation on LiNiVO<sub>4</sub> NPs. The effect of different parameters on photo-catalytic activity was also studied in detail, including dye concentration, catalytic quantity, pH variation, scavenger activity, and recycling of the catalyst. Electrochemical impedance spectroscopy analysis revealed lower charge transfer and good ionic conductivity of LNV NPs, and it is also suitable for supercapacitor preparation.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogenic synthesis of LiNiVO4 nanoparticles for the evaluation of photocatalytic and electrochemical applications\",\"authors\":\"M. Thejaswini, V. Lakshmi Ranganatha, C. Mallikarjunaswamy, S. Pramila, G. Nagaraju\",\"doi\":\"10.1007/s11581-024-05729-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this present work, lithium nickel vanadate nanoparticles (LiNiVO<sub>4</sub> NPs) were synthesized by solution combustion method. Here, jackfruit seed extract is employed as a fuel for the synthesis. These nanoparticles were characterized by various spectroscopic techniques. X-ray diffraction (XRD) studies confirm the inverse spinel structure of LiNiVO<sub>4</sub> NPs. The scanning electron microscopy (SEM) images represent the agglomerated and clustered-like structure of NPs. Energy dispersive X-ray (EDX) spectrometry shows the existence of vanadium, nickel, and oxygen elements. Also, Ni and V are present in the average ratio of 1:1. The UV–visible spectral analysis indicated absorption bands at 465 and 728 nm, corresponding to a band gap energy of 2.2 eV. The vibrational analysis of the NPs was confirmed through IR and Raman spectroscopy, with a new peak observed at 1036 cm<sup>−1</sup> indicating the bond interaction of Li<sup>+</sup>-O-V in the FTIR analysis. Further, LiNiVO<sub>4</sub> NPs exhibit good photocatalytic activity for the degradation of methylene blue (MB) dye under visible light irradiation. And the percentage of degradation efficiency is 91.77 around 180 min. The photocatalytic activity was due to the production of OH radicals during photo irradiation on LiNiVO<sub>4</sub> NPs. The effect of different parameters on photo-catalytic activity was also studied in detail, including dye concentration, catalytic quantity, pH variation, scavenger activity, and recycling of the catalyst. Electrochemical impedance spectroscopy analysis revealed lower charge transfer and good ionic conductivity of LNV NPs, and it is also suitable for supercapacitor preparation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11581-024-05729-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05729-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Biogenic synthesis of LiNiVO4 nanoparticles for the evaluation of photocatalytic and electrochemical applications
In this present work, lithium nickel vanadate nanoparticles (LiNiVO4 NPs) were synthesized by solution combustion method. Here, jackfruit seed extract is employed as a fuel for the synthesis. These nanoparticles were characterized by various spectroscopic techniques. X-ray diffraction (XRD) studies confirm the inverse spinel structure of LiNiVO4 NPs. The scanning electron microscopy (SEM) images represent the agglomerated and clustered-like structure of NPs. Energy dispersive X-ray (EDX) spectrometry shows the existence of vanadium, nickel, and oxygen elements. Also, Ni and V are present in the average ratio of 1:1. The UV–visible spectral analysis indicated absorption bands at 465 and 728 nm, corresponding to a band gap energy of 2.2 eV. The vibrational analysis of the NPs was confirmed through IR and Raman spectroscopy, with a new peak observed at 1036 cm−1 indicating the bond interaction of Li+-O-V in the FTIR analysis. Further, LiNiVO4 NPs exhibit good photocatalytic activity for the degradation of methylene blue (MB) dye under visible light irradiation. And the percentage of degradation efficiency is 91.77 around 180 min. The photocatalytic activity was due to the production of OH radicals during photo irradiation on LiNiVO4 NPs. The effect of different parameters on photo-catalytic activity was also studied in detail, including dye concentration, catalytic quantity, pH variation, scavenger activity, and recycling of the catalyst. Electrochemical impedance spectroscopy analysis revealed lower charge transfer and good ionic conductivity of LNV NPs, and it is also suitable for supercapacitor preparation.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.