分布稳健的数据驱动可靠性分析框架

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
James Hammond , Luis G. Crespo , Francesco Montomoli
{"title":"分布稳健的数据驱动可靠性分析框架","authors":"James Hammond ,&nbsp;Luis G. Crespo ,&nbsp;Francesco Montomoli","doi":"10.1016/j.strusafe.2024.102501","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a reliability analysis framework that accounts for the error caused by characterizing a data set as a probabilistic model. To this end we model the uncertain parameters as a probability box (p-box) of Sliced-Normal (SN) distributions. This class of distributions enables the analyst to characterize complex parameter dependencies with minimal modeling effort. The p-box, which spans the maximum likelihood and the moment-bounded maximum entropy estimates, yields a range of failure probability values. This range shrinks as the amount of data available increases. In addition, we leverage the semi-algebraic nature of the SNs to identify the most likely points of failure (MLPs). Such points allow the efficient estimation of failure probabilities using importance sampling. When the limit state functions are also semi-algebraic, semidefinite programming is used to guarantee that the computed MLPs are correct and complete, therefore ensuring that the resulting reliability analysis is accurate. This framework is applied to the reliability analysis of a truss structure subject to deflection and weight requirements.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"111 ","pages":"Article 102501"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167473024000729/pdfft?md5=22e47572f7a330944052d4ec2aa801cb&pid=1-s2.0-S0167473024000729-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A distributionally robust data-driven framework to reliability analysis\",\"authors\":\"James Hammond ,&nbsp;Luis G. Crespo ,&nbsp;Francesco Montomoli\",\"doi\":\"10.1016/j.strusafe.2024.102501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a reliability analysis framework that accounts for the error caused by characterizing a data set as a probabilistic model. To this end we model the uncertain parameters as a probability box (p-box) of Sliced-Normal (SN) distributions. This class of distributions enables the analyst to characterize complex parameter dependencies with minimal modeling effort. The p-box, which spans the maximum likelihood and the moment-bounded maximum entropy estimates, yields a range of failure probability values. This range shrinks as the amount of data available increases. In addition, we leverage the semi-algebraic nature of the SNs to identify the most likely points of failure (MLPs). Such points allow the efficient estimation of failure probabilities using importance sampling. When the limit state functions are also semi-algebraic, semidefinite programming is used to guarantee that the computed MLPs are correct and complete, therefore ensuring that the resulting reliability analysis is accurate. This framework is applied to the reliability analysis of a truss structure subject to deflection and weight requirements.</p></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"111 \",\"pages\":\"Article 102501\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167473024000729/pdfft?md5=22e47572f7a330944052d4ec2aa801cb&pid=1-s2.0-S0167473024000729-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167473024000729\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473024000729","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种可靠性分析框架,该框架考虑到了将数据集表征为概率模型所造成的误差。为此,我们将不确定参数建模为切分正态分布(SN)的概率盒(p-box)。这一类分布使分析人员能够以最小的建模工作量描述复杂的参数依赖关系。p-box 跨最大似然估计和矩界最大熵估计,可产生一系列故障概率值。这个范围会随着可用数据量的增加而缩小。此外,我们还利用 SN 的半代数特性来识别最可能的故障点 (MLP)。通过这些点,我们可以利用重要度采样有效地估计故障概率。当极限状态函数也是半代数时,半有限编程可用于保证计算出的 MLP 正确且完整,从而确保由此得出的可靠性分析准确无误。该框架被应用于受挠度和重量要求限制的桁架结构的可靠性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A distributionally robust data-driven framework to reliability analysis

This paper proposes a reliability analysis framework that accounts for the error caused by characterizing a data set as a probabilistic model. To this end we model the uncertain parameters as a probability box (p-box) of Sliced-Normal (SN) distributions. This class of distributions enables the analyst to characterize complex parameter dependencies with minimal modeling effort. The p-box, which spans the maximum likelihood and the moment-bounded maximum entropy estimates, yields a range of failure probability values. This range shrinks as the amount of data available increases. In addition, we leverage the semi-algebraic nature of the SNs to identify the most likely points of failure (MLPs). Such points allow the efficient estimation of failure probabilities using importance sampling. When the limit state functions are also semi-algebraic, semidefinite programming is used to guarantee that the computed MLPs are correct and complete, therefore ensuring that the resulting reliability analysis is accurate. This framework is applied to the reliability analysis of a truss structure subject to deflection and weight requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信