Kiran Sabir Ali, Muhammad Sabir Zahoor, Muhammad Tariq, Hafiz Muhammad Asif, Shabbir Hussain, Jafir Hussain Shirazi
{"title":"基于还原氧化石墨烯与 La@Co3O4 和 La@CdO 纳米复合材料的传感器:合成、表征和二氧化氮传感特性","authors":"Kiran Sabir Ali, Muhammad Sabir Zahoor, Muhammad Tariq, Hafiz Muhammad Asif, Shabbir Hussain, Jafir Hussain Shirazi","doi":"10.1007/s13738-024-03075-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we report fabrication of La@Co<sub>3</sub>O<sub>4</sub> and La@CdO with rGO as new materials for NO<sub>2</sub> sensing at a temperature range of 30–90 °C. The nanocomposites were characterized using various characterization tools like FTIR, Powder XRD and SEM to determine the composition and morphology of the nanocomposite sensors. The sensing properties such as sensor response, response time and recovery time were measured. The obtained results exhibited that rGO/La@Co<sub>3</sub>O<sub>4</sub> showed a response of 2.9 while rGO /La@CdO is 2.4 at 50 °C. The sensor exhibited high selectivity to NO<sub>2</sub>, which is explained by a higher affinity for NO<sub>2</sub> compared to other environmental pollutant gases like Cl<sub>2</sub>, NO, H<sub>2</sub>O and CO. The sensing mechanism was explained by the synergistic effect of reduced graphene with La@Co<sub>3</sub>O<sub>4</sub> and La@CdO.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 8","pages":"2067 - 2075"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced graphene oxide with La@Co3O4 and La@CdO nanocomposite based sensors: synthesis, characterization and NO2 sensing properties\",\"authors\":\"Kiran Sabir Ali, Muhammad Sabir Zahoor, Muhammad Tariq, Hafiz Muhammad Asif, Shabbir Hussain, Jafir Hussain Shirazi\",\"doi\":\"10.1007/s13738-024-03075-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present study, we report fabrication of La@Co<sub>3</sub>O<sub>4</sub> and La@CdO with rGO as new materials for NO<sub>2</sub> sensing at a temperature range of 30–90 °C. The nanocomposites were characterized using various characterization tools like FTIR, Powder XRD and SEM to determine the composition and morphology of the nanocomposite sensors. The sensing properties such as sensor response, response time and recovery time were measured. The obtained results exhibited that rGO/La@Co<sub>3</sub>O<sub>4</sub> showed a response of 2.9 while rGO /La@CdO is 2.4 at 50 °C. The sensor exhibited high selectivity to NO<sub>2</sub>, which is explained by a higher affinity for NO<sub>2</sub> compared to other environmental pollutant gases like Cl<sub>2</sub>, NO, H<sub>2</sub>O and CO. The sensing mechanism was explained by the synergistic effect of reduced graphene with La@Co<sub>3</sub>O<sub>4</sub> and La@CdO.</p></div>\",\"PeriodicalId\":676,\"journal\":{\"name\":\"Journal of the Iranian Chemical Society\",\"volume\":\"21 8\",\"pages\":\"2067 - 2075\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Iranian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13738-024-03075-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03075-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reduced graphene oxide with La@Co3O4 and La@CdO nanocomposite based sensors: synthesis, characterization and NO2 sensing properties
In the present study, we report fabrication of La@Co3O4 and La@CdO with rGO as new materials for NO2 sensing at a temperature range of 30–90 °C. The nanocomposites were characterized using various characterization tools like FTIR, Powder XRD and SEM to determine the composition and morphology of the nanocomposite sensors. The sensing properties such as sensor response, response time and recovery time were measured. The obtained results exhibited that rGO/La@Co3O4 showed a response of 2.9 while rGO /La@CdO is 2.4 at 50 °C. The sensor exhibited high selectivity to NO2, which is explained by a higher affinity for NO2 compared to other environmental pollutant gases like Cl2, NO, H2O and CO. The sensing mechanism was explained by the synergistic effect of reduced graphene with La@Co3O4 and La@CdO.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.