{"title":"嵌入式自主系统 Frenet 路径规划器的 GPU 实施:F1tenth 场景案例研究","authors":"Filippo Muzzini , Nicola Capodieci , Federico Ramanzin , Paolo Burgio","doi":"10.1016/j.sysarc.2024.103239","DOIUrl":null,"url":null,"abstract":"<div><p>Autonomous vehicles are increasingly utilized in safety-critical and time-sensitive settings like urban environments and competitive racing. Planning maneuvers ahead is pivotal in these scenarios, where the onboard compute platform determines the vehicle’s future actions. This paper introduces an optimized implementation of the Frenet Path Planner, a renowned path planning algorithm, accelerated through GPU processing. Unlike existing methods, our approach expedites the entire algorithm, encompassing path generation and collision avoidance. We gauge the execution time of our implementation, showcasing significant enhancements over the CPU baseline (up to 22x of speedup). Furthermore, we assess the influence of different precision types (double, float, half) on trajectory accuracy, probing the balance between completion speed and computational precision. Moreover, we analyzed the impact on the execution time caused by the use of Nvidia Unified Memory and by the interference caused by other processes running on the same system. We also evaluate our implementation using the F1tenth simulator and in a real race scenario. The results position our implementation as a strong candidate for the new state-of-the-art implementation for the Frenet Path Planner algorithm.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"154 ","pages":"Article 103239"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1383762124001760/pdfft?md5=766650cf5ed2c70a29ce4dfeae8db630&pid=1-s2.0-S1383762124001760-main.pdf","citationCount":"0","resultStr":"{\"title\":\"GPU implementation of the Frenet Path Planner for embedded autonomous systems: A case study in the F1tenth scenario\",\"authors\":\"Filippo Muzzini , Nicola Capodieci , Federico Ramanzin , Paolo Burgio\",\"doi\":\"10.1016/j.sysarc.2024.103239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autonomous vehicles are increasingly utilized in safety-critical and time-sensitive settings like urban environments and competitive racing. Planning maneuvers ahead is pivotal in these scenarios, where the onboard compute platform determines the vehicle’s future actions. This paper introduces an optimized implementation of the Frenet Path Planner, a renowned path planning algorithm, accelerated through GPU processing. Unlike existing methods, our approach expedites the entire algorithm, encompassing path generation and collision avoidance. We gauge the execution time of our implementation, showcasing significant enhancements over the CPU baseline (up to 22x of speedup). Furthermore, we assess the influence of different precision types (double, float, half) on trajectory accuracy, probing the balance between completion speed and computational precision. Moreover, we analyzed the impact on the execution time caused by the use of Nvidia Unified Memory and by the interference caused by other processes running on the same system. We also evaluate our implementation using the F1tenth simulator and in a real race scenario. The results position our implementation as a strong candidate for the new state-of-the-art implementation for the Frenet Path Planner algorithm.</p></div>\",\"PeriodicalId\":50027,\"journal\":{\"name\":\"Journal of Systems Architecture\",\"volume\":\"154 \",\"pages\":\"Article 103239\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1383762124001760/pdfft?md5=766650cf5ed2c70a29ce4dfeae8db630&pid=1-s2.0-S1383762124001760-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Architecture\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383762124001760\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124001760","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
GPU implementation of the Frenet Path Planner for embedded autonomous systems: A case study in the F1tenth scenario
Autonomous vehicles are increasingly utilized in safety-critical and time-sensitive settings like urban environments and competitive racing. Planning maneuvers ahead is pivotal in these scenarios, where the onboard compute platform determines the vehicle’s future actions. This paper introduces an optimized implementation of the Frenet Path Planner, a renowned path planning algorithm, accelerated through GPU processing. Unlike existing methods, our approach expedites the entire algorithm, encompassing path generation and collision avoidance. We gauge the execution time of our implementation, showcasing significant enhancements over the CPU baseline (up to 22x of speedup). Furthermore, we assess the influence of different precision types (double, float, half) on trajectory accuracy, probing the balance between completion speed and computational precision. Moreover, we analyzed the impact on the execution time caused by the use of Nvidia Unified Memory and by the interference caused by other processes running on the same system. We also evaluate our implementation using the F1tenth simulator and in a real race scenario. The results position our implementation as a strong candidate for the new state-of-the-art implementation for the Frenet Path Planner algorithm.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.