Vincenzo Ferone , Gianpaolo Piscitelli , Bruno Volzone
{"title":"一般非局部线性椭圆和抛物问题的对称性结果","authors":"Vincenzo Ferone , Gianpaolo Piscitelli , Bruno Volzone","doi":"10.1016/j.matpur.2024.103597","DOIUrl":null,"url":null,"abstract":"<div><p>We establish a Talenti-type symmetrization result in the form of mass concentration (<em>i.e.</em> integral comparison) for very general linear nonlocal elliptic problems, equipped with homogeneous Dirichlet boundary conditions.</p><p>In this framework, the relevant concentration comparison for the classical fractional Laplacian can be reviewed as a special case of our main result, thus generalizing the previous results in <span><span>[20]</span></span>.</p><p>Finally, using an implicit time discretization techniques, similar results are obtained for the solutions of Cauchy-Dirichlet nonlocal linear parabolic problems.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"190 ","pages":"Article 103597"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000953/pdfft?md5=19d057b2f02f47e1513406b709fa9d89&pid=1-s2.0-S0021782424000953-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Symmetrization results for general nonlocal linear elliptic and parabolic problems\",\"authors\":\"Vincenzo Ferone , Gianpaolo Piscitelli , Bruno Volzone\",\"doi\":\"10.1016/j.matpur.2024.103597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish a Talenti-type symmetrization result in the form of mass concentration (<em>i.e.</em> integral comparison) for very general linear nonlocal elliptic problems, equipped with homogeneous Dirichlet boundary conditions.</p><p>In this framework, the relevant concentration comparison for the classical fractional Laplacian can be reviewed as a special case of our main result, thus generalizing the previous results in <span><span>[20]</span></span>.</p><p>Finally, using an implicit time discretization techniques, similar results are obtained for the solutions of Cauchy-Dirichlet nonlocal linear parabolic problems.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"190 \",\"pages\":\"Article 103597\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000953/pdfft?md5=19d057b2f02f47e1513406b709fa9d89&pid=1-s2.0-S0021782424000953-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000953\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000953","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Symmetrization results for general nonlocal linear elliptic and parabolic problems
We establish a Talenti-type symmetrization result in the form of mass concentration (i.e. integral comparison) for very general linear nonlocal elliptic problems, equipped with homogeneous Dirichlet boundary conditions.
In this framework, the relevant concentration comparison for the classical fractional Laplacian can be reviewed as a special case of our main result, thus generalizing the previous results in [20].
Finally, using an implicit time discretization techniques, similar results are obtained for the solutions of Cauchy-Dirichlet nonlocal linear parabolic problems.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.