Vincenzo Ferone , Gianpaolo Piscitelli , Bruno Volzone
{"title":"一般非局部线性椭圆和抛物问题的对称性结果","authors":"Vincenzo Ferone , Gianpaolo Piscitelli , Bruno Volzone","doi":"10.1016/j.matpur.2024.103597","DOIUrl":null,"url":null,"abstract":"<div><p>We establish a Talenti-type symmetrization result in the form of mass concentration (<em>i.e.</em> integral comparison) for very general linear nonlocal elliptic problems, equipped with homogeneous Dirichlet boundary conditions.</p><p>In this framework, the relevant concentration comparison for the classical fractional Laplacian can be reviewed as a special case of our main result, thus generalizing the previous results in <span><span>[20]</span></span>.</p><p>Finally, using an implicit time discretization techniques, similar results are obtained for the solutions of Cauchy-Dirichlet nonlocal linear parabolic problems.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000953/pdfft?md5=19d057b2f02f47e1513406b709fa9d89&pid=1-s2.0-S0021782424000953-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Symmetrization results for general nonlocal linear elliptic and parabolic problems\",\"authors\":\"Vincenzo Ferone , Gianpaolo Piscitelli , Bruno Volzone\",\"doi\":\"10.1016/j.matpur.2024.103597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish a Talenti-type symmetrization result in the form of mass concentration (<em>i.e.</em> integral comparison) for very general linear nonlocal elliptic problems, equipped with homogeneous Dirichlet boundary conditions.</p><p>In this framework, the relevant concentration comparison for the classical fractional Laplacian can be reviewed as a special case of our main result, thus generalizing the previous results in <span><span>[20]</span></span>.</p><p>Finally, using an implicit time discretization techniques, similar results are obtained for the solutions of Cauchy-Dirichlet nonlocal linear parabolic problems.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000953/pdfft?md5=19d057b2f02f47e1513406b709fa9d89&pid=1-s2.0-S0021782424000953-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Symmetrization results for general nonlocal linear elliptic and parabolic problems
We establish a Talenti-type symmetrization result in the form of mass concentration (i.e. integral comparison) for very general linear nonlocal elliptic problems, equipped with homogeneous Dirichlet boundary conditions.
In this framework, the relevant concentration comparison for the classical fractional Laplacian can be reviewed as a special case of our main result, thus generalizing the previous results in [20].
Finally, using an implicit time discretization techniques, similar results are obtained for the solutions of Cauchy-Dirichlet nonlocal linear parabolic problems.