Ana Palacios Saura, Joachim Breternitz, Armin Hoell, Susan Schorr
{"title":"卤化物包晶的大爆炸:结晶的起点","authors":"Ana Palacios Saura, Joachim Breternitz, Armin Hoell, Susan Schorr","doi":"10.1557/s43579-024-00611-x","DOIUrl":null,"url":null,"abstract":"<p>Hybrid halide perovskites (HHPs) are very promising absorber materials for solar cells due to their high power conversion efficiency and the low-cost solution-based processing methods. We applied small angle X-ray scattering to MAPbI<sub>3</sub>, FAPbI<sub>3</sub> and MAPbBr<sub>3</sub> precursor solutions in different solvents (GBL, DMF, and mixtures) to gain a deeper understanding of the building blocks during the early stage of HHP formation. We present a core–shell model where the core is formed by [PbX<sub>6</sub>] octahedra surrounded by a shell of solvent molecules, which explains the arrangement of the precursors in solution and how the solvent and the halide influence such arrangement.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"14 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The big bang of halide perovskites: The starting point of crystallization\",\"authors\":\"Ana Palacios Saura, Joachim Breternitz, Armin Hoell, Susan Schorr\",\"doi\":\"10.1557/s43579-024-00611-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hybrid halide perovskites (HHPs) are very promising absorber materials for solar cells due to their high power conversion efficiency and the low-cost solution-based processing methods. We applied small angle X-ray scattering to MAPbI<sub>3</sub>, FAPbI<sub>3</sub> and MAPbBr<sub>3</sub> precursor solutions in different solvents (GBL, DMF, and mixtures) to gain a deeper understanding of the building blocks during the early stage of HHP formation. We present a core–shell model where the core is formed by [PbX<sub>6</sub>] octahedra surrounded by a shell of solvent molecules, which explains the arrangement of the precursors in solution and how the solvent and the halide influence such arrangement.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00611-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00611-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The big bang of halide perovskites: The starting point of crystallization
Hybrid halide perovskites (HHPs) are very promising absorber materials for solar cells due to their high power conversion efficiency and the low-cost solution-based processing methods. We applied small angle X-ray scattering to MAPbI3, FAPbI3 and MAPbBr3 precursor solutions in different solvents (GBL, DMF, and mixtures) to gain a deeper understanding of the building blocks during the early stage of HHP formation. We present a core–shell model where the core is formed by [PbX6] octahedra surrounded by a shell of solvent molecules, which explains the arrangement of the precursors in solution and how the solvent and the halide influence such arrangement.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.