通过三维结构和卤化物替代增强钴层氢氧化物的超级电容行为

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Álvaro Seijas-Da Silva, Víctor Oestreicher, Cristián Huck-Iriart, Martín Mizrahi, Diego Hunt, Valeria Ferrari, Gonzalo Abellán
{"title":"通过三维结构和卤化物替代增强钴层氢氧化物的超级电容行为","authors":"Álvaro Seijas-Da Silva,&nbsp;Víctor Oestreicher,&nbsp;Cristián Huck-Iriart,&nbsp;Martín Mizrahi,&nbsp;Diego Hunt,&nbsp;Valeria Ferrari,&nbsp;Gonzalo Abellán","doi":"10.1002/batt.202400335","DOIUrl":null,"url":null,"abstract":"<p>Among the two-dimensional (2D) materials, layered hydroxides (LHs) stand out due to their chemical versatility, allowing the modulation of physicochemical properties on demand. Specifically, LHs based on earth-abundant elements represent promising phases as electrode materials for energy storage and conversion. However, these materials exhibit significant drawbacks, such as low conductivity and in-plane packing that limits electrolyte diffusion. In this work, we explore the synthetic flexibility of α-Co<sup>II</sup> hydroxides (<i>Simonkolleite</i>-like structures) to overcome these limitations. We elucidate the growth mechanism of 3D flower-like α-Co<sup>II</sup> hydroxyhalides by using in situ SAXS experiments combined with thorough physicochemical, structural, and electrochemical characterization. Furthermore, we compared these findings with the most commonly employed Co-based LHs: β-Co(OH)₂ and CoAl layered double hydroxides. While α-Co<sup>II</sup> LH phases inherently grow as 2D materials, the use of ethanol (EtOH) triggers the formation of 3D arrangements of these layers, which surpass their 2D analogues in capacitive behavior. Additionally, by taking advantage of their anion-dependent bandgap, we demonstrate that substituting halides from chloride to iodide enhances capacitive behavior by more than 40 %. This finding confirms the role of halides in modulating the electronic properties of layered hydroxides, as supported by DFT+U calculations. Hence, this work provides fundamental insights into the 3D growth of α-Co<sup>II</sup> LH and the critical influence of morphology and halide substitution on their electrochemical performance for energy storage applications.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400335","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution\",\"authors\":\"Álvaro Seijas-Da Silva,&nbsp;Víctor Oestreicher,&nbsp;Cristián Huck-Iriart,&nbsp;Martín Mizrahi,&nbsp;Diego Hunt,&nbsp;Valeria Ferrari,&nbsp;Gonzalo Abellán\",\"doi\":\"10.1002/batt.202400335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among the two-dimensional (2D) materials, layered hydroxides (LHs) stand out due to their chemical versatility, allowing the modulation of physicochemical properties on demand. Specifically, LHs based on earth-abundant elements represent promising phases as electrode materials for energy storage and conversion. However, these materials exhibit significant drawbacks, such as low conductivity and in-plane packing that limits electrolyte diffusion. In this work, we explore the synthetic flexibility of α-Co<sup>II</sup> hydroxides (<i>Simonkolleite</i>-like structures) to overcome these limitations. We elucidate the growth mechanism of 3D flower-like α-Co<sup>II</sup> hydroxyhalides by using in situ SAXS experiments combined with thorough physicochemical, structural, and electrochemical characterization. Furthermore, we compared these findings with the most commonly employed Co-based LHs: β-Co(OH)₂ and CoAl layered double hydroxides. While α-Co<sup>II</sup> LH phases inherently grow as 2D materials, the use of ethanol (EtOH) triggers the formation of 3D arrangements of these layers, which surpass their 2D analogues in capacitive behavior. Additionally, by taking advantage of their anion-dependent bandgap, we demonstrate that substituting halides from chloride to iodide enhances capacitive behavior by more than 40 %. This finding confirms the role of halides in modulating the electronic properties of layered hydroxides, as supported by DFT+U calculations. Hence, this work provides fundamental insights into the 3D growth of α-Co<sup>II</sup> LH and the critical influence of morphology and halide substitution on their electrochemical performance for energy storage applications.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400335\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400335\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400335","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在二维(2D)材料中,层状氢氧化物(LHs)因其化学多功能性而脱颖而出,可根据需要调节物理化学特性。具体来说,基于地球富集元素的层状氢氧化物是很有前途的储能电极材料。然而,这些材料表现出明显的缺点,如低导电性和限制电解质扩散的面内堆积。在此,我们探索了 α-Co 氢氧化物的合成灵活性,以克服这些限制。我们利用原位 SAXS 实验,结合全面的物理化学、结构和电化学表征,阐明了三维花状 α-Co 氢氧化物的生长机制。此外,我们还将这些发现与最常用的 Co 基 LHs:β-Co(OH)2 和 CoAl LDHs 进行了比较。虽然α-Co LH 相本质上是作为二维材料生长的,但乙醇会引发这些层形成三维排列,从而在电容行为上超越其二维类似物。此外,通过利用其阴离子带隙,我们证明了将卤化物从氯化物替换为碘化物可将电容行为提高 40%。这一发现证实了卤化物在调节 LH 电子特性中的作用,DFT+U 计算也证明了这一点。因此,这项工作为α-Co LH的三维生长以及形貌和卤化物取代对其电化学性能的关键影响提供了基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution

Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution

Among the two-dimensional (2D) materials, layered hydroxides (LHs) stand out due to their chemical versatility, allowing the modulation of physicochemical properties on demand. Specifically, LHs based on earth-abundant elements represent promising phases as electrode materials for energy storage and conversion. However, these materials exhibit significant drawbacks, such as low conductivity and in-plane packing that limits electrolyte diffusion. In this work, we explore the synthetic flexibility of α-CoII hydroxides (Simonkolleite-like structures) to overcome these limitations. We elucidate the growth mechanism of 3D flower-like α-CoII hydroxyhalides by using in situ SAXS experiments combined with thorough physicochemical, structural, and electrochemical characterization. Furthermore, we compared these findings with the most commonly employed Co-based LHs: β-Co(OH)₂ and CoAl layered double hydroxides. While α-CoII LH phases inherently grow as 2D materials, the use of ethanol (EtOH) triggers the formation of 3D arrangements of these layers, which surpass their 2D analogues in capacitive behavior. Additionally, by taking advantage of their anion-dependent bandgap, we demonstrate that substituting halides from chloride to iodide enhances capacitive behavior by more than 40 %. This finding confirms the role of halides in modulating the electronic properties of layered hydroxides, as supported by DFT+U calculations. Hence, this work provides fundamental insights into the 3D growth of α-CoII LH and the critical influence of morphology and halide substitution on their electrochemical performance for energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信