驯服基于范例的图像翻译扩散模型

IF 17.3 3区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Hao Ma, Jingyuan Yang, Hui Huang
{"title":"驯服基于范例的图像翻译扩散模型","authors":"Hao Ma, Jingyuan Yang, Hui Huang","doi":"10.1007/s41095-023-0371-3","DOIUrl":null,"url":null,"abstract":"<p>Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given exemplar. However, most existing GAN-based translation methods fail to produce photorealistic results. In this study, we propose a new diffusion model-based approach for generating high-quality images that are semantically aligned with the input mask and resemble an exemplar in style. The proposed method trains a conditional denoising diffusion probabilistic model (DDPM) with a SPADE module to integrate the semantic map. We then used a novel contextual loss and auxiliary color loss to guide the optimization process, resulting in images that were visually pleasing and semantically accurate. Experiments demonstrate that our method outperforms state-of-the-art approaches in terms of both visual quality and quantitative metrics.</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"35 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taming diffusion model for exemplar-based image translation\",\"authors\":\"Hao Ma, Jingyuan Yang, Hui Huang\",\"doi\":\"10.1007/s41095-023-0371-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given exemplar. However, most existing GAN-based translation methods fail to produce photorealistic results. In this study, we propose a new diffusion model-based approach for generating high-quality images that are semantically aligned with the input mask and resemble an exemplar in style. The proposed method trains a conditional denoising diffusion probabilistic model (DDPM) with a SPADE module to integrate the semantic map. We then used a novel contextual loss and auxiliary color loss to guide the optimization process, resulting in images that were visually pleasing and semantically accurate. Experiments demonstrate that our method outperforms state-of-the-art approaches in terms of both visual quality and quantitative metrics.</p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-023-0371-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-023-0371-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

基于范例的图像翻译涉及将语义掩码转换为采用给定范例风格的逼真图像。然而,大多数现有的基于 GAN 的翻译方法都无法生成逼真的结果。在本研究中,我们提出了一种基于扩散模型的新方法,用于生成与输入掩码语义一致、风格类似于范例的高质量图像。该方法利用 SPADE 模块训练条件去噪扩散概率模型 (DDPM),以整合语义图。然后,我们使用新颖的上下文损失和辅助颜色损失来指导优化过程,从而生成视觉上悦目、语义上准确的图像。实验证明,我们的方法在视觉质量和定量指标方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Taming diffusion model for exemplar-based image translation

Taming diffusion model for exemplar-based image translation

Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given exemplar. However, most existing GAN-based translation methods fail to produce photorealistic results. In this study, we propose a new diffusion model-based approach for generating high-quality images that are semantically aligned with the input mask and resemble an exemplar in style. The proposed method trains a conditional denoising diffusion probabilistic model (DDPM) with a SPADE module to integrate the semantic map. We then used a novel contextual loss and auxiliary color loss to guide the optimization process, resulting in images that were visually pleasing and semantically accurate. Experiments demonstrate that our method outperforms state-of-the-art approaches in terms of both visual quality and quantitative metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Visual Media
Computational Visual Media Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
16.90
自引率
5.80%
发文量
243
审稿时长
6 weeks
期刊介绍: Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media. Computational Visual Media publishes articles that focus on, but are not limited to, the following areas: • Editing and composition of visual media • Geometric computing for images and video • Geometry modeling and processing • Machine learning for visual media • Physically based animation • Realistic rendering • Recognition and understanding of visual media • Visual computing for robotics • Visualization and visual analytics Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope. This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信