准抛物卡兹丹-卢斯齐基和反射子群

IF 0.7 2区 数学 Q2 MATHEMATICS
Zachary Carlini, Yaolong Shen
{"title":"准抛物卡兹丹-卢斯齐基和反射子群","authors":"Zachary Carlini,&nbsp;Yaolong Shen","doi":"10.1016/j.jpaa.2024.107777","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Wang and the second author constructed a bar involution and canonical basis for a quasi-permutation module of the Hecke algebra associated to a type B Weyl group <em>W</em>, where the basis is parameterized by left cosets of a quasi-parabolic reflection subgroup in <em>W</em>. In this paper we provide an alternative approach to these constructions, and then generalize these constructions to Coxeter groups which contain a product of type B Weyl groups as a parabolic subgroup.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-parabolic Kazhdan-Lusztig bases and reflection subgroups\",\"authors\":\"Zachary Carlini,&nbsp;Yaolong Shen\",\"doi\":\"10.1016/j.jpaa.2024.107777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, Wang and the second author constructed a bar involution and canonical basis for a quasi-permutation module of the Hecke algebra associated to a type B Weyl group <em>W</em>, where the basis is parameterized by left cosets of a quasi-parabolic reflection subgroup in <em>W</em>. In this paper we provide an alternative approach to these constructions, and then generalize these constructions to Coxeter groups which contain a product of type B Weyl groups as a parabolic subgroup.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001749\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001749","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Wang 和第二作者为与 B 型韦尔群相关联的 Hecke 代数的准珀尔贴模块构造了一个条形内卷和规范基,其中基的参数是 B 型韦尔群中准抛物面反射子群的左余弦。 在本文中,我们提供了这些构造的另一种方法,然后将这些构造推广到包含作为抛物面子群的 B 型韦尔群乘积的 Coxeter 群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-parabolic Kazhdan-Lusztig bases and reflection subgroups

Recently, Wang and the second author constructed a bar involution and canonical basis for a quasi-permutation module of the Hecke algebra associated to a type B Weyl group W, where the basis is parameterized by left cosets of a quasi-parabolic reflection subgroup in W. In this paper we provide an alternative approach to these constructions, and then generalize these constructions to Coxeter groups which contain a product of type B Weyl groups as a parabolic subgroup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信