格伯纳-希尔肖夫基在李代数中的一些应用

IF 0.7 2区 数学 Q2 MATHEMATICS
Luis Mendonça
{"title":"格伯纳-希尔肖夫基在李代数中的一些应用","authors":"Luis Mendonça","doi":"10.1016/j.jpaa.2024.107773","DOIUrl":null,"url":null,"abstract":"<div><p>We show that if a countably generated Lie algebra <em>H</em> does not contain isomorphic copies of certain finite-dimensional nilpotent Lie algebras <em>A</em> and <em>B</em> (satisfying some mild conditions), then <em>H</em> embeds into a quotient of <span><math><mi>A</mi><mo>⁎</mo><mi>B</mi></math></span> that is at the same time hopfian and cohopfian. This is a Lie algebraic version of an embedding theorem proved by C. Miller and P. Schupp for groups. We also prove that any finitely presentable Lie algebra is the quotient of a finitely presented, centerless, residually nilpotent and SQ-universal Lie algebra of cohomological dimension at most 2 by an ideal that can be generated by two elements as a Lie subalgebra. This is reminiscent of the Rips construction in group theory. In both results we use the theory of Gröbner-Shirshov bases.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some applications of Gröbner-Shirshov bases to Lie algebras\",\"authors\":\"Luis Mendonça\",\"doi\":\"10.1016/j.jpaa.2024.107773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that if a countably generated Lie algebra <em>H</em> does not contain isomorphic copies of certain finite-dimensional nilpotent Lie algebras <em>A</em> and <em>B</em> (satisfying some mild conditions), then <em>H</em> embeds into a quotient of <span><math><mi>A</mi><mo>⁎</mo><mi>B</mi></math></span> that is at the same time hopfian and cohopfian. This is a Lie algebraic version of an embedding theorem proved by C. Miller and P. Schupp for groups. We also prove that any finitely presentable Lie algebra is the quotient of a finitely presented, centerless, residually nilpotent and SQ-universal Lie algebra of cohomological dimension at most 2 by an ideal that can be generated by two elements as a Lie subalgebra. This is reminiscent of the Rips construction in group theory. In both results we use the theory of Gröbner-Shirshov bases.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001701\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001701","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果一个可数生成的Lie代数不包含某些有限维零势Lie代数的同构副本,并且(满足一些温和的条件)嵌入到一个同时是hopfian和cohopfian的商中。这是米勒(C. Miller)和舒普(P. Schupp)为群证明的嵌入定理的李代数版本。我们还证明,任何有限呈现的李代数都是一个同调维数至多为 2 的有限呈现、无中心、残差零potent 和 SQ-universal 李代数的商,商是一个可以由两个元素生成的理想的李子代数。这让人想起群论中的里普斯构造。在这两个结果中,我们都使用了格罗布纳-希尔绍夫基理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some applications of Gröbner-Shirshov bases to Lie algebras

We show that if a countably generated Lie algebra H does not contain isomorphic copies of certain finite-dimensional nilpotent Lie algebras A and B (satisfying some mild conditions), then H embeds into a quotient of AB that is at the same time hopfian and cohopfian. This is a Lie algebraic version of an embedding theorem proved by C. Miller and P. Schupp for groups. We also prove that any finitely presentable Lie algebra is the quotient of a finitely presented, centerless, residually nilpotent and SQ-universal Lie algebra of cohomological dimension at most 2 by an ideal that can be generated by two elements as a Lie subalgebra. This is reminiscent of the Rips construction in group theory. In both results we use the theory of Gröbner-Shirshov bases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信