零特征中舒尔和斯佩希特模块的呈现

Pub Date : 2024-07-23 DOI:10.1016/j.jpaa.2024.107774
Mihalis Maliakas , Maria Metzaki , Dimitra-Dionysia Stergiopoulou
{"title":"零特征中舒尔和斯佩希特模块的呈现","authors":"Mihalis Maliakas ,&nbsp;Maria Metzaki ,&nbsp;Dimitra-Dionysia Stergiopoulou","doi":"10.1016/j.jpaa.2024.107774","DOIUrl":null,"url":null,"abstract":"<div><p>New presentations of Specht modules of symmetric groups over fields of characteristic zero have been obtained by Brauner, Friedmann, Hanlon, Stanley and Wachs. These involve generators that are column tabloids and relations that are Garnir relations with maximal number of exchanges between consecutive columns or symmetrization of Garnir relations with minimal number of exchanges between consecutive columns. In this paper, we examine Garnir relations and their symmetrization with any number of exchanges. In both cases, we provide sufficient arithmetic conditions so that the corresponding quotient is a Specht module. In particular, in the first case this yields new presentations of Specht modules if the parts of the conjugate partition that correspond to maximal number of exchanges greater than 1 are distinct. These results generalize the presentations mentioned above and offer an answer to a question of Friedmann, Hanlon and Wachs. Our approach is via representations of the general linear group.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presentations of Schur and Specht modules in characteristic zero\",\"authors\":\"Mihalis Maliakas ,&nbsp;Maria Metzaki ,&nbsp;Dimitra-Dionysia Stergiopoulou\",\"doi\":\"10.1016/j.jpaa.2024.107774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New presentations of Specht modules of symmetric groups over fields of characteristic zero have been obtained by Brauner, Friedmann, Hanlon, Stanley and Wachs. These involve generators that are column tabloids and relations that are Garnir relations with maximal number of exchanges between consecutive columns or symmetrization of Garnir relations with minimal number of exchanges between consecutive columns. In this paper, we examine Garnir relations and their symmetrization with any number of exchanges. In both cases, we provide sufficient arithmetic conditions so that the corresponding quotient is a Specht module. In particular, in the first case this yields new presentations of Specht modules if the parts of the conjugate partition that correspond to maximal number of exchanges greater than 1 are distinct. These results generalize the presentations mentioned above and offer an answer to a question of Friedmann, Hanlon and Wachs. Our approach is via representations of the general linear group.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

布劳纳(Brauner)、弗里德曼(Friedmann)、汉伦(Hanlon)、斯坦利(Stanley)和瓦克斯(Wachs)获得了特征为零的域上对称群的斯派克特模块的新表述。这涉及到列表生成器,以及连续列之间交换次数最多的 Garnir 关系或连续列之间交换次数最少的 Garnir 关系的对称化。在本文中,我们将研究任意交换次数的 Garnir 关系及其对称性。在这两种情况下,我们都提供了充分的算术条件,使相应的商是一个 Specht 模块。特别是在第一种情况下,如果共轭分区中对应于最大交换数大于 1 的部分是不同的,那么就会产生 Specht 模块的新呈现。这些结果概括了上面提到的呈现,并为弗里德曼、汉伦和瓦克斯的一个问题提供了答案。我们的方法是通过一般线性群的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Presentations of Schur and Specht modules in characteristic zero

New presentations of Specht modules of symmetric groups over fields of characteristic zero have been obtained by Brauner, Friedmann, Hanlon, Stanley and Wachs. These involve generators that are column tabloids and relations that are Garnir relations with maximal number of exchanges between consecutive columns or symmetrization of Garnir relations with minimal number of exchanges between consecutive columns. In this paper, we examine Garnir relations and their symmetrization with any number of exchanges. In both cases, we provide sufficient arithmetic conditions so that the corresponding quotient is a Specht module. In particular, in the first case this yields new presentations of Specht modules if the parts of the conjugate partition that correspond to maximal number of exchanges greater than 1 are distinct. These results generalize the presentations mentioned above and offer an answer to a question of Friedmann, Hanlon and Wachs. Our approach is via representations of the general linear group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信