{"title":"估值环上幂级数环的弱维度","authors":"Adam Jones","doi":"10.1016/j.jpaa.2024.107778","DOIUrl":null,"url":null,"abstract":"<div><p>We examine the power series ring <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span> over a valuation ring <em>R</em> of rank 1, with proper, dense value group. We give a counterexample to Hilbert's syzygy theorem for <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>, i.e. an <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>-module <em>C</em> that is flat over <em>R</em> and has flat dimension at least 2 over <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>, contradicting a previously published result. The key ingredient in our construction is an exploration of the valuation theory of <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>. We also use this theory to give a new proof that <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span> is not a coherent ring, a fact which is essential in our construction of the module <em>C</em>.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001750/pdfft?md5=7d7a61796914e797af61b233ad5207c2&pid=1-s2.0-S0022404924001750-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Weak dimension of power series rings over valuation rings\",\"authors\":\"Adam Jones\",\"doi\":\"10.1016/j.jpaa.2024.107778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We examine the power series ring <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span> over a valuation ring <em>R</em> of rank 1, with proper, dense value group. We give a counterexample to Hilbert's syzygy theorem for <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>, i.e. an <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>-module <em>C</em> that is flat over <em>R</em> and has flat dimension at least 2 over <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>, contradicting a previously published result. The key ingredient in our construction is an exploration of the valuation theory of <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>. We also use this theory to give a new proof that <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span> is not a coherent ring, a fact which is essential in our construction of the module <em>C</em>.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001750/pdfft?md5=7d7a61796914e797af61b233ad5207c2&pid=1-s2.0-S0022404924001750-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001750\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001750","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了秩为 1 的值环 R 上的幂级数环 R[[X]],它具有适当的密集值群。我们给出了 R[[X]] 的希尔伯特对称定理的反例,即 R[[X]] 模块 C 在 R 上是平的,并且在 R[[X]] 上的平维至少是 2,这与之前发表的一个结果相矛盾。我们构造的关键要素是对 R[[X]] 估值理论的探索。我们还利用这一理论给出了 R[[X]] 不是相干环的新证明,这一事实对我们构造模块 C 至关重要。
Weak dimension of power series rings over valuation rings
We examine the power series ring over a valuation ring R of rank 1, with proper, dense value group. We give a counterexample to Hilbert's syzygy theorem for , i.e. an -module C that is flat over R and has flat dimension at least 2 over , contradicting a previously published result. The key ingredient in our construction is an exploration of the valuation theory of . We also use this theory to give a new proof that is not a coherent ring, a fact which is essential in our construction of the module C.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.