紧凑李群的核,以及奇点范畴的支持

Pub Date : 2024-07-25 DOI:10.1016/j.jpaa.2024.107780
Thomas Peirce
{"title":"紧凑李群的核,以及奇点范畴的支持","authors":"Thomas Peirce","doi":"10.1016/j.jpaa.2024.107780","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we adapt the notion of the nucleus defined by Benson, Carlson, and Robinson to compact Lie groups in non-modular characteristic. We show that it describes the singularities of the projective scheme of the cohomology of its classifying space. A notion of support for singularity categories of ring spectra (in the sense of Greenlees and Stevenson) is established, and is shown to be precisely the nucleus in this case, consistent with a conjecture of Benson and Greenlees for finite groups.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001774/pdfft?md5=1caa8c3af6bce11b853017fe930a9f81&pid=1-s2.0-S0022404924001774-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The nucleus of a compact Lie group, and support of singularity categories\",\"authors\":\"Thomas Peirce\",\"doi\":\"10.1016/j.jpaa.2024.107780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we adapt the notion of the nucleus defined by Benson, Carlson, and Robinson to compact Lie groups in non-modular characteristic. We show that it describes the singularities of the projective scheme of the cohomology of its classifying space. A notion of support for singularity categories of ring spectra (in the sense of Greenlees and Stevenson) is established, and is shown to be precisely the nucleus in this case, consistent with a conjecture of Benson and Greenlees for finite groups.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001774/pdfft?md5=1caa8c3af6bce11b853017fe930a9f81&pid=1-s2.0-S0022404924001774-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将本森、卡尔森和罗宾逊定义的核概念应用于非模态特征的紧凑李群。我们证明它描述了其分类空间同调的投影方案的奇点。我们还建立了一个支持环谱奇点类别的概念(在格林列斯和史蒂文森的意义上),并证明在这种情况下正是核,这与本森和格林列斯对有限群的猜想是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The nucleus of a compact Lie group, and support of singularity categories

In this paper we adapt the notion of the nucleus defined by Benson, Carlson, and Robinson to compact Lie groups in non-modular characteristic. We show that it describes the singularities of the projective scheme of the cohomology of its classifying space. A notion of support for singularity categories of ring spectra (in the sense of Greenlees and Stevenson) is established, and is shown to be precisely the nucleus in this case, consistent with a conjecture of Benson and Greenlees for finite groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信