代表诺里-斯里尼瓦斯障碍的扩展

IF 0.7 2区 数学 Q2 MATHEMATICS
Yukihide Takayama
{"title":"代表诺里-斯里尼瓦斯障碍的扩展","authors":"Yukihide Takayama","doi":"10.1016/j.jpaa.2024.107783","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be a pair of a smooth variety <em>X</em> over an algebraically closed field <em>k</em> of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span> and its Frobenius morphism <em>F</em>. Given a Frobenius <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-lifting <span><math><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> of the pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, Nori and Srinivas <span><span>[9]</span></span> determined the obstruction <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>∈</mo><mi>Ext</mi><mo>(</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>,</mo><mi>B</mi><msub><mrow><mi>F</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span> to Frobenius <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-lifting of <span><math><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> in terms of Čech cohomology. The extension representing <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> has been only known for <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, which uses the Cartier operator. In this paper, we interpret <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> in terms of Kato's version of de Rham-Witt Cartier operator <span><span>[8]</span></span> and determine the extension representing <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107783"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions representing Nori-Srinivas obstruction\",\"authors\":\"Yukihide Takayama\",\"doi\":\"10.1016/j.jpaa.2024.107783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be a pair of a smooth variety <em>X</em> over an algebraically closed field <em>k</em> of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span> and its Frobenius morphism <em>F</em>. Given a Frobenius <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-lifting <span><math><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> of the pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, Nori and Srinivas <span><span>[9]</span></span> determined the obstruction <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>∈</mo><mi>Ext</mi><mo>(</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>,</mo><mi>B</mi><msub><mrow><mi>F</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span> to Frobenius <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-lifting of <span><math><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> in terms of Čech cohomology. The extension representing <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> has been only known for <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, which uses the Cartier operator. In this paper, we interpret <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> in terms of Kato's version of de Rham-Witt Cartier operator <span><span>[8]</span></span> and determine the extension representing <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 1\",\"pages\":\"Article 107783\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001804\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001804","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设是一对特征代数闭域上的光滑综及其弗罗贝尼斯态。Nori 和 Srinivas 用 Čech 同调法确定了这对的弗罗贝尼乌斯变换的障碍。代表的扩展只适用于使用卡蒂埃算子的Ⅳ。在本文中,我们用加藤版本的 de Rham-Witt 卡蒂埃算子进行解释,并确定了 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensions representing Nori-Srinivas obstruction

Let (X,F) be a pair of a smooth variety X over an algebraically closed field k of characteristic p>0 and its Frobenius morphism F. Given a Frobenius Wn(k)-lifting (X¯,F¯) of the pair (X,F) for n1, Nori and Srinivas [9] determined the obstruction obsX¯,F¯Ext(ΩX/k1,BFΩX/k1) to Frobenius Wn+1(k)-lifting of (X¯,F¯) in terms of Čech cohomology. The extension representing obsX¯,F¯ has been only known for n=1, which uses the Cartier operator. In this paper, we interpret obsX¯,F¯ in terms of Kato's version of de Rham-Witt Cartier operator [8] and determine the extension representing obsX¯,F¯ for n2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信