实现环丙沙星光电催化降解的 Nise2/Mos2 n-n 异质结中的电荷再分布

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Dr. Tunde L. Yusuf, Olalekan C. Olatunde, Daniel Masekela, Kwena D. Modibane, Damian C. Onwudiwe, Seshibe Makgato
{"title":"实现环丙沙星光电催化降解的 Nise2/Mos2 n-n 异质结中的电荷再分布","authors":"Dr. Tunde L. Yusuf,&nbsp;Olalekan C. Olatunde,&nbsp;Daniel Masekela,&nbsp;Kwena D. Modibane,&nbsp;Damian C. Onwudiwe,&nbsp;Seshibe Makgato","doi":"10.1002/celc.202400309","DOIUrl":null,"url":null,"abstract":"<p>This study reports the photoelectrocatalytic (PEC) activity of a n–n heterojunction comprising MoS<sub>2</sub> and NiSe<sub>2</sub>. The synthesis of the composite was achieved through a facile solvothermal method, yielding an exfoliated MoS<sub>2</sub> layered sheet loaded with NiSe<sub>2</sub> nanoparticles. Under visible light radiation and an external electric field, the obtained composite NiSe<sub>2</sub>/MoS<sub>2</sub> exhibited enhanced catalytic activity for ciprofloxacin (CIP) degradation. The NiSe<sub>2</sub>/MoS<sub>2</sub> heterojunction achieved about 78 % degradation efficiency with a first-order kinetic rate of 0.0111 min<sup>−1</sup>, compared to 38 % efficiency and a first-order kinetic rate of 0.0044 min<sup>−1</sup> observed for MoS<sub>2</sub>. The NiSe<sub>2</sub>/MoS<sub>2</sub> heterojunction was more advantageous due to the synergy of charge carrier induction by visible light radiation and improved charge carrier separation induced by the external electric field. The formation of n–n heterojunction at the interface of the two materials resulted in charge redistribution in the materials, with a simultaneous realignment of the band structure to achieve Fermi energy equilibration. The primary reactive species responsible for CIP degradation was identified as the photo-induced h<sup>+</sup>. Furthermore, the catalyst exhibited high stability and reusability, with no significant reduction in activity observed after five experimental cycles. This study reveals the potential of exploring the synergy between the photocatalytic and electrocatalytic processes in removing harmful pharmaceutical compounds from water.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 16","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400309","citationCount":"0","resultStr":"{\"title\":\"Charge Redistribution in Nise2/Mos2 n–n Heterojunction towards the Photoelectrocatalytic Degradation of Ciprofloxacin\",\"authors\":\"Dr. Tunde L. Yusuf,&nbsp;Olalekan C. Olatunde,&nbsp;Daniel Masekela,&nbsp;Kwena D. Modibane,&nbsp;Damian C. Onwudiwe,&nbsp;Seshibe Makgato\",\"doi\":\"10.1002/celc.202400309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study reports the photoelectrocatalytic (PEC) activity of a n–n heterojunction comprising MoS<sub>2</sub> and NiSe<sub>2</sub>. The synthesis of the composite was achieved through a facile solvothermal method, yielding an exfoliated MoS<sub>2</sub> layered sheet loaded with NiSe<sub>2</sub> nanoparticles. Under visible light radiation and an external electric field, the obtained composite NiSe<sub>2</sub>/MoS<sub>2</sub> exhibited enhanced catalytic activity for ciprofloxacin (CIP) degradation. The NiSe<sub>2</sub>/MoS<sub>2</sub> heterojunction achieved about 78 % degradation efficiency with a first-order kinetic rate of 0.0111 min<sup>−1</sup>, compared to 38 % efficiency and a first-order kinetic rate of 0.0044 min<sup>−1</sup> observed for MoS<sub>2</sub>. The NiSe<sub>2</sub>/MoS<sub>2</sub> heterojunction was more advantageous due to the synergy of charge carrier induction by visible light radiation and improved charge carrier separation induced by the external electric field. The formation of n–n heterojunction at the interface of the two materials resulted in charge redistribution in the materials, with a simultaneous realignment of the band structure to achieve Fermi energy equilibration. The primary reactive species responsible for CIP degradation was identified as the photo-induced h<sup>+</sup>. Furthermore, the catalyst exhibited high stability and reusability, with no significant reduction in activity observed after five experimental cycles. This study reveals the potential of exploring the synergy between the photocatalytic and electrocatalytic processes in removing harmful pharmaceutical compounds from water.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 16\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400309\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400309\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400309","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告了由 MoS2 和 NiSe2 组成的 n-n 异质结的光电催化(PEC)活性。该复合材料是通过一种简便的溶热法合成的,得到了一种负载有 NiSe2 纳米颗粒的剥离 MoS2 层片。在可见光辐射和外加电场的作用下,所获得的 NiSe2/MoS2 复合材料在降解环丙沙星(CIP)方面表现出更强的催化活性。NiSe2/MoS2 异质结的降解效率约为 78%,一阶动力学速率为 0.0111 min-1,而 MoS2 的降解效率为 38%,一阶动力学速率为 0.0044 min-1。由于可见光辐射诱导电荷载流子和外部电场改善电荷载流子分离的协同作用,NiSe2/MoS2 异质结更具优势。在两种材料的界面上形成的 n-n 异质结导致了材料中电荷的重新分布,同时重新调整了带状结构,实现了费米能平衡。经鉴定,导致 CIP 降解的主要反应物是光诱导 h+。此外,催化剂还表现出很高的稳定性和可重复使用性,经过五个实验周期后,活性没有明显降低。这项研究揭示了探索光催化和电催化过程在去除水中有害药物化合物方面的协同作用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Charge Redistribution in Nise2/Mos2 n–n Heterojunction towards the Photoelectrocatalytic Degradation of Ciprofloxacin

Charge Redistribution in Nise2/Mos2 n–n Heterojunction towards the Photoelectrocatalytic Degradation of Ciprofloxacin

Charge Redistribution in Nise2/Mos2 n–n Heterojunction towards the Photoelectrocatalytic Degradation of Ciprofloxacin

This study reports the photoelectrocatalytic (PEC) activity of a n–n heterojunction comprising MoS2 and NiSe2. The synthesis of the composite was achieved through a facile solvothermal method, yielding an exfoliated MoS2 layered sheet loaded with NiSe2 nanoparticles. Under visible light radiation and an external electric field, the obtained composite NiSe2/MoS2 exhibited enhanced catalytic activity for ciprofloxacin (CIP) degradation. The NiSe2/MoS2 heterojunction achieved about 78 % degradation efficiency with a first-order kinetic rate of 0.0111 min−1, compared to 38 % efficiency and a first-order kinetic rate of 0.0044 min−1 observed for MoS2. The NiSe2/MoS2 heterojunction was more advantageous due to the synergy of charge carrier induction by visible light radiation and improved charge carrier separation induced by the external electric field. The formation of n–n heterojunction at the interface of the two materials resulted in charge redistribution in the materials, with a simultaneous realignment of the band structure to achieve Fermi energy equilibration. The primary reactive species responsible for CIP degradation was identified as the photo-induced h+. Furthermore, the catalyst exhibited high stability and reusability, with no significant reduction in activity observed after five experimental cycles. This study reveals the potential of exploring the synergy between the photocatalytic and electrocatalytic processes in removing harmful pharmaceutical compounds from water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信