{"title":"具有粘性耗散的饱和达西-布林克曼介质中的磁流对流不稳定性","authors":"Anil Kumar, D. Bhargavi, P. G. Siddheshwar","doi":"10.1140/epjb/s10051-024-00738-9","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of dissipation with viscosity on magnetohydro-convective instability in a saturated Darcy–Brinkman medium is examined. The bottom boundary is designated as adiabatic, whereas the top boundary is isothermal. Numerical linear stability analysis investigates normal modes that disturb the horizontal base flow at different inclinations. The case study shows that the most unstable disturbances are horizontal rolls, normal modes characterized by a wave vector perpendicular to the main flow direction. The horizontal rolls are the favored instability mode. Barletta et al. also showed that horizontal rolls are more unstable than any other oblique roll mode in the hydromagnetic scenario. This finding provides insights into the behavior of MHD fluid flow and heat transfer in porous media, with implications for applications in geoscience, engineering, and environmental science.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 7","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydro-convective instability in a saturated Darcy–Brinkman medium with viscous dissipation\",\"authors\":\"Anil Kumar, D. Bhargavi, P. G. Siddheshwar\",\"doi\":\"10.1140/epjb/s10051-024-00738-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The influence of dissipation with viscosity on magnetohydro-convective instability in a saturated Darcy–Brinkman medium is examined. The bottom boundary is designated as adiabatic, whereas the top boundary is isothermal. Numerical linear stability analysis investigates normal modes that disturb the horizontal base flow at different inclinations. The case study shows that the most unstable disturbances are horizontal rolls, normal modes characterized by a wave vector perpendicular to the main flow direction. The horizontal rolls are the favored instability mode. Barletta et al. also showed that horizontal rolls are more unstable than any other oblique roll mode in the hydromagnetic scenario. This finding provides insights into the behavior of MHD fluid flow and heat transfer in porous media, with implications for applications in geoscience, engineering, and environmental science.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 7\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00738-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00738-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Magnetohydro-convective instability in a saturated Darcy–Brinkman medium with viscous dissipation
The influence of dissipation with viscosity on magnetohydro-convective instability in a saturated Darcy–Brinkman medium is examined. The bottom boundary is designated as adiabatic, whereas the top boundary is isothermal. Numerical linear stability analysis investigates normal modes that disturb the horizontal base flow at different inclinations. The case study shows that the most unstable disturbances are horizontal rolls, normal modes characterized by a wave vector perpendicular to the main flow direction. The horizontal rolls are the favored instability mode. Barletta et al. also showed that horizontal rolls are more unstable than any other oblique roll mode in the hydromagnetic scenario. This finding provides insights into the behavior of MHD fluid flow and heat transfer in porous media, with implications for applications in geoscience, engineering, and environmental science.