关于可数完全拓扑群

IF 0.6 4区 数学 Q3 MATHEMATICS
Li-Hong Xie , Shou Lin
{"title":"关于可数完全拓扑群","authors":"Li-Hong Xie ,&nbsp;Shou Lin","doi":"10.1016/j.topol.2024.109024","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give a characterization of countably complete topological groups and study when a countably complete subgroup of a topological group is <em>C</em>-embedded. We mainly show that (1) a topological group <em>G</em> is countably complete (the notion introduced by M. Tkachenko in 2012) iff <em>G</em> contains a closed <em>r</em>-pseudocompact subgroup <em>H</em> such that the quotient space <span><math><mi>G</mi><mo>/</mo><mi>H</mi></math></span> is completely metrizable and the canonical quotient mapping <span><math><mi>π</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi><mo>/</mo><mi>H</mi></math></span> satisfies that <span><math><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is <em>r</em>-pseudocompact in <em>G</em> for each <em>r</em>-pseudocompact set <em>F</em> in <span><math><mi>G</mi><mo>/</mo><mi>H</mi></math></span>; (2) every countably complete weakly <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable and <em>ω</em>-balanced subgroup <em>H</em> of a topological group <em>G</em> is <em>C</em>-embedded; (3) every countably complete subgroup <em>H</em> of a pointwise pseudocompact topological group <em>G</em> is <em>C</em>-embedded; (4) every uniformly strongly countably complete and weakly <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable subgroup <em>H</em> of a topological group <em>G</em> is <em>C</em>-embedded. Further, an <em>ω</em>-narrow locally compact subgroup <em>H</em> of a topological group <em>G</em> is <em>C</em>-embedded.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"355 ","pages":"Article 109024"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On countably complete topological groups\",\"authors\":\"Li-Hong Xie ,&nbsp;Shou Lin\",\"doi\":\"10.1016/j.topol.2024.109024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we give a characterization of countably complete topological groups and study when a countably complete subgroup of a topological group is <em>C</em>-embedded. We mainly show that (1) a topological group <em>G</em> is countably complete (the notion introduced by M. Tkachenko in 2012) iff <em>G</em> contains a closed <em>r</em>-pseudocompact subgroup <em>H</em> such that the quotient space <span><math><mi>G</mi><mo>/</mo><mi>H</mi></math></span> is completely metrizable and the canonical quotient mapping <span><math><mi>π</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi><mo>/</mo><mi>H</mi></math></span> satisfies that <span><math><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is <em>r</em>-pseudocompact in <em>G</em> for each <em>r</em>-pseudocompact set <em>F</em> in <span><math><mi>G</mi><mo>/</mo><mi>H</mi></math></span>; (2) every countably complete weakly <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable and <em>ω</em>-balanced subgroup <em>H</em> of a topological group <em>G</em> is <em>C</em>-embedded; (3) every countably complete subgroup <em>H</em> of a pointwise pseudocompact topological group <em>G</em> is <em>C</em>-embedded; (4) every uniformly strongly countably complete and weakly <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable subgroup <em>H</em> of a topological group <em>G</em> is <em>C</em>-embedded. Further, an <em>ω</em>-narrow locally compact subgroup <em>H</em> of a topological group <em>G</em> is <em>C</em>-embedded.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"355 \",\"pages\":\"Article 109024\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124002098\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了可数完全拓扑群的特征,并研究了拓扑群的可数完全子群何时被嵌入。我们主要证明:(1) 如果一个拓扑群包含一个封闭的子群,那么这个拓扑群就是可数完全拓扑群(M.Tkachenko 在 2012 年提出的概念),如果它包含一个封闭的-伪完备子群,使得商空间是完全可元空间,并且对于每个-伪完备集 in,其典型商映射满足 is -pseudocompact in ;(2) 拓扑群的每个可数完全弱可因化和平衡子群都是-嵌入的;(3) 点伪紧凑拓扑群的每个可数完全子群都是-嵌入的;(4) 拓扑群的每个均匀强可数完全和弱可因化子群都是-嵌入的。此外,拓扑群的-窄局部紧密子群是-内嵌的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On countably complete topological groups

In this paper, we give a characterization of countably complete topological groups and study when a countably complete subgroup of a topological group is C-embedded. We mainly show that (1) a topological group G is countably complete (the notion introduced by M. Tkachenko in 2012) iff G contains a closed r-pseudocompact subgroup H such that the quotient space G/H is completely metrizable and the canonical quotient mapping π:GG/H satisfies that π1(F) is r-pseudocompact in G for each r-pseudocompact set F in G/H; (2) every countably complete weakly Ψω-factorizable and ω-balanced subgroup H of a topological group G is C-embedded; (3) every countably complete subgroup H of a pointwise pseudocompact topological group G is C-embedded; (4) every uniformly strongly countably complete and weakly Ψω-factorizable subgroup H of a topological group G is C-embedded. Further, an ω-narrow locally compact subgroup H of a topological group G is C-embedded.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信