一阶哈密顿场论的解空间几何 I:从粒子动力学到自由电动力学

IF 1.6 3区 数学 Q1 MATHEMATICS
F.M. Ciaglia , F. Di Cosmo , A. Ibort , G. Marmo , L. Schiavone , A. Zampini
{"title":"一阶哈密顿场论的解空间几何 I:从粒子动力学到自由电动力学","authors":"F.M. Ciaglia ,&nbsp;F. Di Cosmo ,&nbsp;A. Ibort ,&nbsp;G. Marmo ,&nbsp;L. Schiavone ,&nbsp;A. Zampini","doi":"10.1016/j.geomphys.2024.105279","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse the problem of defining a Poisson bracket structure on the space of solutions of the equations of motions of first order Hamiltonian field theories. The cases of Hamiltonian mechanical point systems – as a (<span><math><mn>0</mn><mo>+</mo><mn>1</mn></math></span>)-dimensional field – and more general field theories without gauge symmetries are addressed by showing the existence of a symplectic (and, thus, a Poisson) structure on the space of solutions. Also the easiest case of gauge theory, namely free electrodynamics, is considered: within this problem, a pre-symplectic tensor on the space of solutions is introduced, and a Poisson structure is induced in terms of a flat connection on a suitable bundle associated to the theory.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0393044024001803/pdfft?md5=4cbee6c061039eeac092b1171c9b2ce1&pid=1-s2.0-S0393044024001803-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The geometry of the solution space of first order Hamiltonian field theories I: From particle dynamics to free electrodynamics\",\"authors\":\"F.M. Ciaglia ,&nbsp;F. Di Cosmo ,&nbsp;A. Ibort ,&nbsp;G. Marmo ,&nbsp;L. Schiavone ,&nbsp;A. Zampini\",\"doi\":\"10.1016/j.geomphys.2024.105279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyse the problem of defining a Poisson bracket structure on the space of solutions of the equations of motions of first order Hamiltonian field theories. The cases of Hamiltonian mechanical point systems – as a (<span><math><mn>0</mn><mo>+</mo><mn>1</mn></math></span>)-dimensional field – and more general field theories without gauge symmetries are addressed by showing the existence of a symplectic (and, thus, a Poisson) structure on the space of solutions. Also the easiest case of gauge theory, namely free electrodynamics, is considered: within this problem, a pre-symplectic tensor on the space of solutions is introduced, and a Poisson structure is induced in terms of a flat connection on a suitable bundle associated to the theory.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001803/pdfft?md5=4cbee6c061039eeac092b1171c9b2ce1&pid=1-s2.0-S0393044024001803-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001803\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001803","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了在一阶哈密顿场论运动方程的解的空间上定义泊松括号结构的问题。通过证明解的空间上存在交映结构(以及泊松结构),我们探讨了哈密顿机械点系统(作为一个()维场)和无规对称的更一般场论的情况。此外,我们还考虑了规理论中最简单的情况,即自由电动力学:在这一问题中,引入了解空间上的前交映张量,并通过与理论相关的合适束上的平面连接诱导出泊松结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The geometry of the solution space of first order Hamiltonian field theories I: From particle dynamics to free electrodynamics

We analyse the problem of defining a Poisson bracket structure on the space of solutions of the equations of motions of first order Hamiltonian field theories. The cases of Hamiltonian mechanical point systems – as a (0+1)-dimensional field – and more general field theories without gauge symmetries are addressed by showing the existence of a symplectic (and, thus, a Poisson) structure on the space of solutions. Also the easiest case of gauge theory, namely free electrodynamics, is considered: within this problem, a pre-symplectic tensor on the space of solutions is introduced, and a Poisson structure is induced in terms of a flat connection on a suitable bundle associated to the theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信