{"title":"利用凸优化进行有理系统的峰值估计","authors":"Jared Miller, Roy S. Smith","doi":"10.1016/j.ejcon.2024.101088","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents algorithms that upper-bound the peak value of a state function along trajectories of a continuous-time system with rational dynamics. The finite-dimensional but nonconvex peak estimation problem is cast as a convex infinite-dimensional linear program in occupation measures. This infinite-dimensional program is then truncated into finite-dimensions using the moment-Sum-of-Squares (SOS) hierarchy of semidefinite programs. Prior work on treating rational dynamics using the moment-SOS approach involves clearing dynamics to common denominators or adding lifting variables to handle reciprocal terms under new equality constraints. Our solution method uses a sum-of-rational method based on absolute continuity of measures. The Moment-SOS truncations of our program possess lower computational complexity and (empirically demonstrated) higher accuracy of upper bounds on example systems as compared to prior approaches.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101088"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peak estimation of rational systems using convex optimization\",\"authors\":\"Jared Miller, Roy S. Smith\",\"doi\":\"10.1016/j.ejcon.2024.101088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents algorithms that upper-bound the peak value of a state function along trajectories of a continuous-time system with rational dynamics. The finite-dimensional but nonconvex peak estimation problem is cast as a convex infinite-dimensional linear program in occupation measures. This infinite-dimensional program is then truncated into finite-dimensions using the moment-Sum-of-Squares (SOS) hierarchy of semidefinite programs. Prior work on treating rational dynamics using the moment-SOS approach involves clearing dynamics to common denominators or adding lifting variables to handle reciprocal terms under new equality constraints. Our solution method uses a sum-of-rational method based on absolute continuity of measures. The Moment-SOS truncations of our program possess lower computational complexity and (empirically demonstrated) higher accuracy of upper bounds on example systems as compared to prior approaches.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101088\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001481\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001481","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Peak estimation of rational systems using convex optimization
This paper presents algorithms that upper-bound the peak value of a state function along trajectories of a continuous-time system with rational dynamics. The finite-dimensional but nonconvex peak estimation problem is cast as a convex infinite-dimensional linear program in occupation measures. This infinite-dimensional program is then truncated into finite-dimensions using the moment-Sum-of-Squares (SOS) hierarchy of semidefinite programs. Prior work on treating rational dynamics using the moment-SOS approach involves clearing dynamics to common denominators or adding lifting variables to handle reciprocal terms under new equality constraints. Our solution method uses a sum-of-rational method based on absolute continuity of measures. The Moment-SOS truncations of our program possess lower computational complexity and (empirically demonstrated) higher accuracy of upper bounds on example systems as compared to prior approaches.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.