Alexander MacLaren, Parker LaMascus, Robert W. Carpick
{"title":"提高间隔层成像方法的范围和可靠性","authors":"Alexander MacLaren, Parker LaMascus, Robert W. Carpick","doi":"10.1007/s11249-024-01890-0","DOIUrl":null,"url":null,"abstract":"<div><p>The spacer layer imaging method (SLIM) is widely used to measure the thickness of additive and lubricant films, in lubricant development and evaluation, and for fundamental research into elastohydrodynamic lubrication and tribofilm formation mechanisms. The film thickness measurement, as implemented on several popular tribometers, provides powerful, non-destructive in-situ mapping of film topography with nanometre-scale height sensitivity. However, the results can be highly sensitive to experimental procedure, machine condition, and image analysis, in some cases reporting unphysical film thickness trends. The prevailing image analysis techniques make it challenging to interrogate these errors, often hiding their multivariate nonlinear behaviour from the user by spatial averaging. Herein, several common ‘silent errors’ in the SLIM measurement, including colour matching to incorrect fringe orders, and colour drift due to the optical properties of the system or film itself, are discussed, with examples. A robust suite of novel <i>a priori</i> and <i>a posteriori</i> methods to address these issues, and to improve the accuracy and reliability of the measurement, are also presented, including a novel, computationally inexpensive circle-finding algorithm for automated image processing. In combination, these methods allow reliable mapping of films up to at least 800 nm in thickness, representing a significant milestone for the utility of SLIM applied to elastohydrodynamic contact.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01890-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Range and Reliability of the Spacer Layer Imaging Method\",\"authors\":\"Alexander MacLaren, Parker LaMascus, Robert W. Carpick\",\"doi\":\"10.1007/s11249-024-01890-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spacer layer imaging method (SLIM) is widely used to measure the thickness of additive and lubricant films, in lubricant development and evaluation, and for fundamental research into elastohydrodynamic lubrication and tribofilm formation mechanisms. The film thickness measurement, as implemented on several popular tribometers, provides powerful, non-destructive in-situ mapping of film topography with nanometre-scale height sensitivity. However, the results can be highly sensitive to experimental procedure, machine condition, and image analysis, in some cases reporting unphysical film thickness trends. The prevailing image analysis techniques make it challenging to interrogate these errors, often hiding their multivariate nonlinear behaviour from the user by spatial averaging. Herein, several common ‘silent errors’ in the SLIM measurement, including colour matching to incorrect fringe orders, and colour drift due to the optical properties of the system or film itself, are discussed, with examples. A robust suite of novel <i>a priori</i> and <i>a posteriori</i> methods to address these issues, and to improve the accuracy and reliability of the measurement, are also presented, including a novel, computationally inexpensive circle-finding algorithm for automated image processing. In combination, these methods allow reliable mapping of films up to at least 800 nm in thickness, representing a significant milestone for the utility of SLIM applied to elastohydrodynamic contact.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"72 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-024-01890-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01890-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01890-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhancing the Range and Reliability of the Spacer Layer Imaging Method
The spacer layer imaging method (SLIM) is widely used to measure the thickness of additive and lubricant films, in lubricant development and evaluation, and for fundamental research into elastohydrodynamic lubrication and tribofilm formation mechanisms. The film thickness measurement, as implemented on several popular tribometers, provides powerful, non-destructive in-situ mapping of film topography with nanometre-scale height sensitivity. However, the results can be highly sensitive to experimental procedure, machine condition, and image analysis, in some cases reporting unphysical film thickness trends. The prevailing image analysis techniques make it challenging to interrogate these errors, often hiding their multivariate nonlinear behaviour from the user by spatial averaging. Herein, several common ‘silent errors’ in the SLIM measurement, including colour matching to incorrect fringe orders, and colour drift due to the optical properties of the system or film itself, are discussed, with examples. A robust suite of novel a priori and a posteriori methods to address these issues, and to improve the accuracy and reliability of the measurement, are also presented, including a novel, computationally inexpensive circle-finding algorithm for automated image processing. In combination, these methods allow reliable mapping of films up to at least 800 nm in thickness, representing a significant milestone for the utility of SLIM applied to elastohydrodynamic contact.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.