{"title":"与某一狄利克列相关联的欧拉积段","authors":"Rajat Gupta , Aditi Savalia","doi":"10.1016/j.jnt.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>In the spirit of the work of Hardy-Littlewood and Lavrik, we study the Dirichlet series associated to the generalized divisor function <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>d</mi><mo>|</mo><mi>n</mi></mrow></msub><msup><mrow><mi>d</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>. We obtain an exact identity relating the Dirichlet series <span><math><mi>ζ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mi>ζ</mi><mo>(</mo><mi>s</mi><mo>−</mo><mi>α</mi><mo>)</mo></math></span> and a segment of the Euler product attached to it. Specifically, our main theorems are valid in the critical strip.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"265 ","pages":"Pages 270-290"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A segment of Euler product associated to a certain Dirichlet series\",\"authors\":\"Rajat Gupta , Aditi Savalia\",\"doi\":\"10.1016/j.jnt.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the spirit of the work of Hardy-Littlewood and Lavrik, we study the Dirichlet series associated to the generalized divisor function <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>d</mi><mo>|</mo><mi>n</mi></mrow></msub><msup><mrow><mi>d</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>. We obtain an exact identity relating the Dirichlet series <span><math><mi>ζ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mi>ζ</mi><mo>(</mo><mi>s</mi><mo>−</mo><mi>α</mi><mo>)</mo></math></span> and a segment of the Euler product attached to it. Specifically, our main theorems are valid in the critical strip.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"265 \",\"pages\":\"Pages 270-290\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001501\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001501","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A segment of Euler product associated to a certain Dirichlet series
In the spirit of the work of Hardy-Littlewood and Lavrik, we study the Dirichlet series associated to the generalized divisor function . We obtain an exact identity relating the Dirichlet series and a segment of the Euler product attached to it. Specifically, our main theorems are valid in the critical strip.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.