算术级数上一般 L 函数的系数之和及其应用

Pub Date : 2024-07-17 DOI:10.1016/j.jnt.2024.06.011
Dan Wang
{"title":"算术级数上一般 L 函数的系数之和及其应用","authors":"Dan Wang","doi":"10.1016/j.jnt.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the asymptotic distribution of coefficients of general <em>L</em>-functions over arithmetic progressions without the Ramanujan conjecture. As an application, we consider the high mean of Fourier coefficients of holomorphic forms or Maass forms for <span><math><mi>Γ</mi><mo>=</mo><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> over arithmetic progressions, and improve the results of Jiang and Lü <span><span>[10]</span></span>. Our new results remove the restriction to prime module and improve the interval length of module <em>q</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of coefficients of general L-functions over arithmetic progressions and applications\",\"authors\":\"Dan Wang\",\"doi\":\"10.1016/j.jnt.2024.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the asymptotic distribution of coefficients of general <em>L</em>-functions over arithmetic progressions without the Ramanujan conjecture. As an application, we consider the high mean of Fourier coefficients of holomorphic forms or Maass forms for <span><math><mi>Γ</mi><mo>=</mo><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> over arithmetic progressions, and improve the results of Jiang and Lü <span><span>[10]</span></span>. Our new results remove the restriction to prime module and improve the interval length of module <em>q</em>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在没有拉马努扬猜想的情况下研究了算术级数上一般-函数系数的渐近分布。作为应用,我们考虑了全形形式或马斯形式在算术级数上的傅里叶系数的高均值,并改进了蒋和吕(Jiang and Lü)的结果。我们的新结果消除了对素数模块的限制,改善了模块的区间长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sums of coefficients of general L-functions over arithmetic progressions and applications

In this paper, we study the asymptotic distribution of coefficients of general L-functions over arithmetic progressions without the Ramanujan conjecture. As an application, we consider the high mean of Fourier coefficients of holomorphic forms or Maass forms for Γ=SL(2,Z) over arithmetic progressions, and improve the results of Jiang and Lü [10]. Our new results remove the restriction to prime module and improve the interval length of module q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信