{"title":"关于小加成能量序列的数量方差","authors":"Zonglin Li , Nadav Yesha","doi":"10.1016/j.jnt.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>For a real-valued sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, denote by <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>ℓ</mi><mo>)</mo></math></span> the number of its first <em>N</em> fractional parts lying in a random interval of size <span><math><mi>ℓ</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo>/</mo><mi>N</mi></math></span>, where <span><math><mi>L</mi><mo>=</mo><mi>o</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> as <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. We study the variance of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>ℓ</mi><mo>)</mo></math></span> (the number variance) for sequences of the form <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>α</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is a sequence of distinct integers. We show that if the additive energy of the sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is bounded from above by <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>ε</mi></mrow></msup><mo>/</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for some <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, then for almost all <em>α</em>, the number variance is asymptotic to <em>L</em> (Poissonian number variance). This holds in particular for the sequence <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>α</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mo>≥</mo><mn>2</mn></math></span> whenever <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> with <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"265 ","pages":"Pages 344-355"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001513/pdfft?md5=37404fefcd835f751277ba8aa774bc81&pid=1-s2.0-S0022314X24001513-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the number variance of sequences with small additive energy\",\"authors\":\"Zonglin Li , Nadav Yesha\",\"doi\":\"10.1016/j.jnt.2024.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a real-valued sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, denote by <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>ℓ</mi><mo>)</mo></math></span> the number of its first <em>N</em> fractional parts lying in a random interval of size <span><math><mi>ℓ</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo>/</mo><mi>N</mi></math></span>, where <span><math><mi>L</mi><mo>=</mo><mi>o</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> as <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. We study the variance of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>ℓ</mi><mo>)</mo></math></span> (the number variance) for sequences of the form <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>α</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is a sequence of distinct integers. We show that if the additive energy of the sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is bounded from above by <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>ε</mi></mrow></msup><mo>/</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for some <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, then for almost all <em>α</em>, the number variance is asymptotic to <em>L</em> (Poissonian number variance). This holds in particular for the sequence <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>α</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mo>≥</mo><mn>2</mn></math></span> whenever <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> with <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"265 \",\"pages\":\"Pages 344-355\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001513/pdfft?md5=37404fefcd835f751277ba8aa774bc81&pid=1-s2.0-S0022314X24001513-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001513\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001513","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the number variance of sequences with small additive energy
For a real-valued sequence , denote by the number of its first N fractional parts lying in a random interval of size , where as . We study the variance of (the number variance) for sequences of the form , where is a sequence of distinct integers. We show that if the additive energy of the sequence is bounded from above by for some , then for almost all α, the number variance is asymptotic to L (Poissonian number variance). This holds in particular for the sequence whenever with .
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.