关于小加成能量序列的数量方差

Pub Date : 2024-07-18 DOI:10.1016/j.jnt.2024.06.006
Zonglin Li , Nadav Yesha
{"title":"关于小加成能量序列的数量方差","authors":"Zonglin Li ,&nbsp;Nadav Yesha","doi":"10.1016/j.jnt.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>For a real-valued sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, denote by <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>ℓ</mi><mo>)</mo></math></span> the number of its first <em>N</em> fractional parts lying in a random interval of size <span><math><mi>ℓ</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo>/</mo><mi>N</mi></math></span>, where <span><math><mi>L</mi><mo>=</mo><mi>o</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> as <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. We study the variance of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>ℓ</mi><mo>)</mo></math></span> (the number variance) for sequences of the form <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>α</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is a sequence of distinct integers. We show that if the additive energy of the sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is bounded from above by <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>ε</mi></mrow></msup><mo>/</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for some <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, then for almost all <em>α</em>, the number variance is asymptotic to <em>L</em> (Poissonian number variance). This holds in particular for the sequence <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>α</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mo>≥</mo><mn>2</mn></math></span> whenever <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> with <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001513/pdfft?md5=37404fefcd835f751277ba8aa774bc81&pid=1-s2.0-S0022314X24001513-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the number variance of sequences with small additive energy\",\"authors\":\"Zonglin Li ,&nbsp;Nadav Yesha\",\"doi\":\"10.1016/j.jnt.2024.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a real-valued sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, denote by <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>ℓ</mi><mo>)</mo></math></span> the number of its first <em>N</em> fractional parts lying in a random interval of size <span><math><mi>ℓ</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo>/</mo><mi>N</mi></math></span>, where <span><math><mi>L</mi><mo>=</mo><mi>o</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> as <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. We study the variance of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>ℓ</mi><mo>)</mo></math></span> (the number variance) for sequences of the form <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>α</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is a sequence of distinct integers. We show that if the additive energy of the sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is bounded from above by <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>ε</mi></mrow></msup><mo>/</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for some <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, then for almost all <em>α</em>, the number variance is asymptotic to <em>L</em> (Poissonian number variance). This holds in particular for the sequence <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>α</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mo>≥</mo><mn>2</mn></math></span> whenever <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> with <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001513/pdfft?md5=37404fefcd835f751277ba8aa774bc81&pid=1-s2.0-S0022314X24001513-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个实值序列 ,表示它的第一个分数部分位于大小为 的随机区间内的个数,其中为 。我们将研究形式为 的序列的方差(数方差),其中 , 是一个由不同整数组成的序列。我们的研究表明,如果序列的加法能量由上至下以某个 ,为界,那么对于几乎所有 ,数方差都渐近于(泊松数方差)。这尤其适用于有 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the number variance of sequences with small additive energy

For a real-valued sequence (xn)n=1, denote by SN() the number of its first N fractional parts lying in a random interval of size :=L/N, where L=o(N) as N. We study the variance of SN() (the number variance) for sequences of the form xn=αan, where (an)n=1 is a sequence of distinct integers. We show that if the additive energy of the sequence (an)n=1 is bounded from above by N3ε/L2 for some ε>0, then for almost all α, the number variance is asymptotic to L (Poissonian number variance). This holds in particular for the sequence xn=αnd,d2 whenever L=Nβ with 0β<1/2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信