弱淤积模块

Pub Date : 2024-07-27 DOI:10.1007/s10468-024-10276-8
Qianqian Yuan, Hailou Yao
{"title":"弱淤积模块","authors":"Qianqian Yuan,&nbsp;Hailou Yao","doi":"10.1007/s10468-024-10276-8","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-established that weak <i>n</i>-tilting modules serve as generalizations of both <i>n</i>-tilting and <i>n</i>-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak <i>n</i>-silting modules and elaborate on their applications. Specifically, we aim to establish the \"triangular relation\" within the framework of silting theory in a module category, and provide novel characterizations of weak <i>n</i>-tilting modules. Furthermore, we delve into the properties of <i>n</i>-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak <i>n</i>-silting module can be classified as partial <i>n</i>-silting, weak <i>n</i>-tilting, or partial <i>n</i>-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak <i>n</i>-silting modules with respect to <span>\\(\\mathcal {F}_{\\mathbb {T}}\\)</span>. Lastly, we investigate weak <i>n</i>-silting and weak <i>n</i>-tilting objects in a morphism category.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Silting Modules\",\"authors\":\"Qianqian Yuan,&nbsp;Hailou Yao\",\"doi\":\"10.1007/s10468-024-10276-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well-established that weak <i>n</i>-tilting modules serve as generalizations of both <i>n</i>-tilting and <i>n</i>-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak <i>n</i>-silting modules and elaborate on their applications. Specifically, we aim to establish the \\\"triangular relation\\\" within the framework of silting theory in a module category, and provide novel characterizations of weak <i>n</i>-tilting modules. Furthermore, we delve into the properties of <i>n</i>-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak <i>n</i>-silting module can be classified as partial <i>n</i>-silting, weak <i>n</i>-tilting, or partial <i>n</i>-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak <i>n</i>-silting modules with respect to <span>\\\\(\\\\mathcal {F}_{\\\\mathbb {T}}\\\\)</span>. Lastly, we investigate weak <i>n</i>-silting and weak <i>n</i>-tilting objects in a morphism category.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10276-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10276-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弱 n-倾斜模块是 n-倾斜模块和 n-倾斜模块的一般化,这一点已得到公认。本文的主要目的是描述弱 n 倾模块的特征,并阐述其应用。具体来说,我们的目标是在模块范畴的淤积理论框架内建立 "三角关系",并提供弱 n 倾模块的新特征。此外,我们还深入研究了 n-(共)淤积模块的性质及其与其他一些模块类型的相互关系。此外,我们还探讨了弱 n-淤积模块可以归类为部分 n-淤积、弱 n-淤积或部分 n-淤积的条件。值得注意的是,我们建立并证明了巴佐尼(Bazzoni)著名的对同调模块的纯注入性的描述对于弱 n-ilting模块仍然有效(\mathcal {F}_\{mathbb {T}}\ )。最后,我们研究了态类别中的弱 n-silting 和弱 n-tilting 对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Weak Silting Modules

It is well-established that weak n-tilting modules serve as generalizations of both n-tilting and n-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak n-silting modules and elaborate on their applications. Specifically, we aim to establish the "triangular relation" within the framework of silting theory in a module category, and provide novel characterizations of weak n-tilting modules. Furthermore, we delve into the properties of n-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak n-silting module can be classified as partial n-silting, weak n-tilting, or partial n-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak n-silting modules with respect to \(\mathcal {F}_{\mathbb {T}}\). Lastly, we investigate weak n-silting and weak n-tilting objects in a morphism category.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信