弱淤积模块

IF 0.5 4区 数学 Q3 MATHEMATICS
Qianqian Yuan, Hailou Yao
{"title":"弱淤积模块","authors":"Qianqian Yuan,&nbsp;Hailou Yao","doi":"10.1007/s10468-024-10276-8","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-established that weak <i>n</i>-tilting modules serve as generalizations of both <i>n</i>-tilting and <i>n</i>-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak <i>n</i>-silting modules and elaborate on their applications. Specifically, we aim to establish the \"triangular relation\" within the framework of silting theory in a module category, and provide novel characterizations of weak <i>n</i>-tilting modules. Furthermore, we delve into the properties of <i>n</i>-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak <i>n</i>-silting module can be classified as partial <i>n</i>-silting, weak <i>n</i>-tilting, or partial <i>n</i>-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak <i>n</i>-silting modules with respect to <span>\\(\\mathcal {F}_{\\mathbb {T}}\\)</span>. Lastly, we investigate weak <i>n</i>-silting and weak <i>n</i>-tilting objects in a morphism category.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 4","pages":"1681 - 1707"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Silting Modules\",\"authors\":\"Qianqian Yuan,&nbsp;Hailou Yao\",\"doi\":\"10.1007/s10468-024-10276-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well-established that weak <i>n</i>-tilting modules serve as generalizations of both <i>n</i>-tilting and <i>n</i>-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak <i>n</i>-silting modules and elaborate on their applications. Specifically, we aim to establish the \\\"triangular relation\\\" within the framework of silting theory in a module category, and provide novel characterizations of weak <i>n</i>-tilting modules. Furthermore, we delve into the properties of <i>n</i>-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak <i>n</i>-silting module can be classified as partial <i>n</i>-silting, weak <i>n</i>-tilting, or partial <i>n</i>-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak <i>n</i>-silting modules with respect to <span>\\\\(\\\\mathcal {F}_{\\\\mathbb {T}}\\\\)</span>. Lastly, we investigate weak <i>n</i>-silting and weak <i>n</i>-tilting objects in a morphism category.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 4\",\"pages\":\"1681 - 1707\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10276-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10276-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

弱 n-倾斜模块是 n-倾斜模块和 n-倾斜模块的一般化,这一点已得到公认。本文的主要目的是描述弱 n 倾模块的特征,并阐述其应用。具体来说,我们的目标是在模块范畴的淤积理论框架内建立 "三角关系",并提供弱 n 倾模块的新特征。此外,我们还深入研究了 n-(共)淤积模块的性质及其与其他一些模块类型的相互关系。此外,我们还探讨了弱 n-淤积模块可以归类为部分 n-淤积、弱 n-淤积或部分 n-淤积的条件。值得注意的是,我们建立并证明了巴佐尼(Bazzoni)著名的对同调模块的纯注入性的描述对于弱 n-ilting模块仍然有效(\mathcal {F}_\{mathbb {T}}\ )。最后,我们研究了态类别中的弱 n-silting 和弱 n-tilting 对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak Silting Modules

It is well-established that weak n-tilting modules serve as generalizations of both n-tilting and n-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak n-silting modules and elaborate on their applications. Specifically, we aim to establish the "triangular relation" within the framework of silting theory in a module category, and provide novel characterizations of weak n-tilting modules. Furthermore, we delve into the properties of n-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak n-silting module can be classified as partial n-silting, weak n-tilting, or partial n-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak n-silting modules with respect to \(\mathcal {F}_{\mathbb {T}}\). Lastly, we investigate weak n-silting and weak n-tilting objects in a morphism category.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信