{"title":"弱淤积模块","authors":"Qianqian Yuan, Hailou Yao","doi":"10.1007/s10468-024-10276-8","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-established that weak <i>n</i>-tilting modules serve as generalizations of both <i>n</i>-tilting and <i>n</i>-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak <i>n</i>-silting modules and elaborate on their applications. Specifically, we aim to establish the \"triangular relation\" within the framework of silting theory in a module category, and provide novel characterizations of weak <i>n</i>-tilting modules. Furthermore, we delve into the properties of <i>n</i>-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak <i>n</i>-silting module can be classified as partial <i>n</i>-silting, weak <i>n</i>-tilting, or partial <i>n</i>-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak <i>n</i>-silting modules with respect to <span>\\(\\mathcal {F}_{\\mathbb {T}}\\)</span>. Lastly, we investigate weak <i>n</i>-silting and weak <i>n</i>-tilting objects in a morphism category.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Silting Modules\",\"authors\":\"Qianqian Yuan, Hailou Yao\",\"doi\":\"10.1007/s10468-024-10276-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well-established that weak <i>n</i>-tilting modules serve as generalizations of both <i>n</i>-tilting and <i>n</i>-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak <i>n</i>-silting modules and elaborate on their applications. Specifically, we aim to establish the \\\"triangular relation\\\" within the framework of silting theory in a module category, and provide novel characterizations of weak <i>n</i>-tilting modules. Furthermore, we delve into the properties of <i>n</i>-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak <i>n</i>-silting module can be classified as partial <i>n</i>-silting, weak <i>n</i>-tilting, or partial <i>n</i>-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak <i>n</i>-silting modules with respect to <span>\\\\(\\\\mathcal {F}_{\\\\mathbb {T}}\\\\)</span>. Lastly, we investigate weak <i>n</i>-silting and weak <i>n</i>-tilting objects in a morphism category.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10276-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10276-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is well-established that weak n-tilting modules serve as generalizations of both n-tilting and n-cotilting modules. The primary objective of this paper is to delineate the characterizations of weak n-silting modules and elaborate on their applications. Specifically, we aim to establish the "triangular relation" within the framework of silting theory in a module category, and provide novel characterizations of weak n-tilting modules. Furthermore, we delve into the properties of n-(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak n-silting module can be classified as partial n-silting, weak n-tilting, or partial n-tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak n-silting modules with respect to \(\mathcal {F}_{\mathbb {T}}\). Lastly, we investigate weak n-silting and weak n-tilting objects in a morphism category.