关于索波列函数与索波列规范的可微分性

IF 0.8 3区 数学 Q2 MATHEMATICS
Vladimir Gol'dshtein, Paz Hashash, Alexander Ukhlov
{"title":"关于索波列函数与索波列规范的可微分性","authors":"Vladimir Gol'dshtein,&nbsp;Paz Hashash,&nbsp;Alexander Ukhlov","doi":"10.1002/mana.202300545","DOIUrl":null,"url":null,"abstract":"<p>We study connections between the <span></span><math>\n <semantics>\n <msubsup>\n <mi>W</mi>\n <mi>p</mi>\n <mn>1</mn>\n </msubsup>\n <annotation>$W^1_p$</annotation>\n </semantics></math>-differentiability and the <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>p</mi>\n </msub>\n <annotation>$L_p$</annotation>\n </semantics></math>-differentiability of Sobolev functions. We prove that <span></span><math>\n <semantics>\n <msubsup>\n <mi>W</mi>\n <mi>p</mi>\n <mn>1</mn>\n </msubsup>\n <annotation>$W^1_p$</annotation>\n </semantics></math>-differentiability implies the <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>p</mi>\n </msub>\n <annotation>$L_p$</annotation>\n </semantics></math>-differentiability, but the opposite implication is not valid. The notion of approximate differentiability is discussed as well. In addition, we consider the <span></span><math>\n <semantics>\n <msubsup>\n <mi>W</mi>\n <mi>p</mi>\n <mn>1</mn>\n </msubsup>\n <annotation>$W^1_p$</annotation>\n </semantics></math>-differentiability of Sobolev functions <span></span><math>\n <semantics>\n <msub>\n <mo>cap</mo>\n <mi>p</mi>\n </msub>\n <annotation>$\\operatorname{cap}_p$</annotation>\n </semantics></math>-almost everywhere.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 10","pages":"3681-3699"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300545","citationCount":"0","resultStr":"{\"title\":\"On differentiability of Sobolev functions with respect to the Sobolev norm\",\"authors\":\"Vladimir Gol'dshtein,&nbsp;Paz Hashash,&nbsp;Alexander Ukhlov\",\"doi\":\"10.1002/mana.202300545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study connections between the <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>W</mi>\\n <mi>p</mi>\\n <mn>1</mn>\\n </msubsup>\\n <annotation>$W^1_p$</annotation>\\n </semantics></math>-differentiability and the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$L_p$</annotation>\\n </semantics></math>-differentiability of Sobolev functions. We prove that <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>W</mi>\\n <mi>p</mi>\\n <mn>1</mn>\\n </msubsup>\\n <annotation>$W^1_p$</annotation>\\n </semantics></math>-differentiability implies the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$L_p$</annotation>\\n </semantics></math>-differentiability, but the opposite implication is not valid. The notion of approximate differentiability is discussed as well. In addition, we consider the <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>W</mi>\\n <mi>p</mi>\\n <mn>1</mn>\\n </msubsup>\\n <annotation>$W^1_p$</annotation>\\n </semantics></math>-differentiability of Sobolev functions <span></span><math>\\n <semantics>\\n <msub>\\n <mo>cap</mo>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\operatorname{cap}_p$</annotation>\\n </semantics></math>-almost everywhere.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 10\",\"pages\":\"3681-3699\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300545\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300545\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300545","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究索波列函数的-可微性与-可微性之间的联系。我们证明了-可微分性意味着-可微分性,但相反的暗示并不成立。我们还讨论了近似可微分性的概念。此外,我们还考虑了几乎无处不在的 Sobolev 函数的可微性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On differentiability of Sobolev functions with respect to the Sobolev norm

We study connections between the W p 1 $W^1_p$ -differentiability and the L p $L_p$ -differentiability of Sobolev functions. We prove that W p 1 $W^1_p$ -differentiability implies the L p $L_p$ -differentiability, but the opposite implication is not valid. The notion of approximate differentiability is discussed as well. In addition, we consider the W p 1 $W^1_p$ -differentiability of Sobolev functions cap p $\operatorname{cap}_p$ -almost everywhere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信