基于邻域粗糙集的标签分布特征选择

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Yilin Wu, Wenzhong Guo, Yaojin Lin
{"title":"基于邻域粗糙集的标签分布特征选择","authors":"Yilin Wu,&nbsp;Wenzhong Guo,&nbsp;Yaojin Lin","doi":"10.1002/cpe.8236","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In label distribution learning (LDL), an instance is involved with many labels in different importance degrees, and the feature space of instances is accompanied with thousands of redundant and/or irrelevant features. Therefore, the main characteristic of feature selection in LDL is to evaluate the ability of each feature. Motivated by neighborhood rough set (NRS), which can be used to measure the dependency degree of feature via constructing neighborhood relations on feature space and label space, respectively, this article proposes a novel label distribution feature selection method. In this article, the neighborhood class of instance in label distribution space is defined, which is beneficial to recognize the logical class of target instance. Then, a new NRS model for LDL is proposed. Specially, the dependency degree of feature combining label weight is defined. Finally, a label distribution feature selection based on NRS is presented. Extensive experiments on 12 data sets show the effectiveness of the proposed algorithm.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 23","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label distribution feature selection based on neighborhood rough set\",\"authors\":\"Yilin Wu,&nbsp;Wenzhong Guo,&nbsp;Yaojin Lin\",\"doi\":\"10.1002/cpe.8236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In label distribution learning (LDL), an instance is involved with many labels in different importance degrees, and the feature space of instances is accompanied with thousands of redundant and/or irrelevant features. Therefore, the main characteristic of feature selection in LDL is to evaluate the ability of each feature. Motivated by neighborhood rough set (NRS), which can be used to measure the dependency degree of feature via constructing neighborhood relations on feature space and label space, respectively, this article proposes a novel label distribution feature selection method. In this article, the neighborhood class of instance in label distribution space is defined, which is beneficial to recognize the logical class of target instance. Then, a new NRS model for LDL is proposed. Specially, the dependency degree of feature combining label weight is defined. Finally, a label distribution feature selection based on NRS is presented. Extensive experiments on 12 data sets show the effectiveness of the proposed algorithm.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"36 23\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8236\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8236","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要在标签分布学习(LDL)中,一个实例会涉及许多重要程度不同的标签,而实例的特征空间则伴随着成千上万的冗余和/或无关特征。因此,LDL 中特征选择的主要特点是评估每个特征的能力。受邻域粗糙集(NRS)的启发,本文提出了一种新颖的标签分布特征选择方法。本文定义了实例在标签分布空间中的邻类,这有利于识别目标实例的逻辑类。然后,提出了一种新的 LDL NRS 模型。特别是,定义了特征结合标签权重的依赖程度。最后,提出了一种基于 NRS 的标签分布特征选择方法。在 12 个数据集上进行的大量实验表明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Label distribution feature selection based on neighborhood rough set

In label distribution learning (LDL), an instance is involved with many labels in different importance degrees, and the feature space of instances is accompanied with thousands of redundant and/or irrelevant features. Therefore, the main characteristic of feature selection in LDL is to evaluate the ability of each feature. Motivated by neighborhood rough set (NRS), which can be used to measure the dependency degree of feature via constructing neighborhood relations on feature space and label space, respectively, this article proposes a novel label distribution feature selection method. In this article, the neighborhood class of instance in label distribution space is defined, which is beneficial to recognize the logical class of target instance. Then, a new NRS model for LDL is proposed. Specially, the dependency degree of feature combining label weight is defined. Finally, a label distribution feature selection based on NRS is presented. Extensive experiments on 12 data sets show the effectiveness of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信