流动化学和微反应技术的可持续性

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2024-09-16 DOI:10.1039/d4gc01882f
{"title":"流动化学和微反应技术的可持续性","authors":"","doi":"10.1039/d4gc01882f","DOIUrl":null,"url":null,"abstract":"<div><div>This critical review provides an overview of the sustainability outcomes associated with flow chemistry, as a new concept in process chemistry, and its related technology and engineering field, microreaction technology. This study is broad in scope and covers cost and life cycle assessment methodologies applied to flow chemistry. The present review differs from past studies by providing a mechanistic viewpoint, <em>i.e.</em>, starting by listing key levers (<em>e.g.</em> mass transfer), and then unravelling their impact on costs and life cycle, using reported flow chemistry studies as examples to underline the sustainability capability. This way, this review transitions from informing on how flow chemistry and microreactors can improve fundamental principles in chemical engineering and chemistry to their translation to improved sustainability. Gaps and opportunities in the reporting of microreactor/flow chemistry are identified. To put the reported achievements into perspective, a life cycle assessment (LCA) study is conducted that reports on the effects of the key levers, as identified in this study, for a flow chemistry reaction at the pilot scale, conducted at an industrial site (technology readiness level 4). This way, this study provides a quantitative forecast of what principally can be achieved when maximising the key levers, in terms of the individual LCA impact categories and their total average outcome.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/gc/d4gc01882f?page=search","citationCount":"0","resultStr":"{\"title\":\"Sustainability of flow chemistry and microreaction technology\",\"authors\":\"\",\"doi\":\"10.1039/d4gc01882f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This critical review provides an overview of the sustainability outcomes associated with flow chemistry, as a new concept in process chemistry, and its related technology and engineering field, microreaction technology. This study is broad in scope and covers cost and life cycle assessment methodologies applied to flow chemistry. The present review differs from past studies by providing a mechanistic viewpoint, <em>i.e.</em>, starting by listing key levers (<em>e.g.</em> mass transfer), and then unravelling their impact on costs and life cycle, using reported flow chemistry studies as examples to underline the sustainability capability. This way, this review transitions from informing on how flow chemistry and microreactors can improve fundamental principles in chemical engineering and chemistry to their translation to improved sustainability. Gaps and opportunities in the reporting of microreactor/flow chemistry are identified. To put the reported achievements into perspective, a life cycle assessment (LCA) study is conducted that reports on the effects of the key levers, as identified in this study, for a flow chemistry reaction at the pilot scale, conducted at an industrial site (technology readiness level 4). This way, this study provides a quantitative forecast of what principally can be achieved when maximising the key levers, in terms of the individual LCA impact categories and their total average outcome.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/gc/d4gc01882f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224007428\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224007428","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本评论综述了流程化学中的一个新概念--流动化学及其相关技术和工程领域--微反应技术的可持续发展成果。本研究范围广泛,涵盖了应用于流动化学的成本和生命周期评估方法。与以往研究不同的是,本综述提供了一种机制性观点,即首先列出关键杠杆(如传质),然后以已报告的流动化学研究为例,揭示其对成本和生命周期的影响,以强调可持续性能力。这样,本综述就从介绍流动化学和微反应器如何改善化学工程和化学的基本原理,过渡到将其转化为改善可持续性的方法。本综述指出了微反应器/流动化学报告中存在的差距和机遇。为了使所报告的成就更有说服力,我们开展了一项生命周期评估(LCA)研究,报告了本研究中确定的关键杠杆对在工业现场(技术就绪程度为 4 级)进行的中试规模流动化学反应的影响。通过这种方式,本研究从生命周期评估的各个影响类别及其总平均结果的角度,对最大限度地利用关键杠杆所能实现的主要目标进行了定量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainability of flow chemistry and microreaction technology

Sustainability of flow chemistry and microreaction technology

Sustainability of flow chemistry and microreaction technology
This critical review provides an overview of the sustainability outcomes associated with flow chemistry, as a new concept in process chemistry, and its related technology and engineering field, microreaction technology. This study is broad in scope and covers cost and life cycle assessment methodologies applied to flow chemistry. The present review differs from past studies by providing a mechanistic viewpoint, i.e., starting by listing key levers (e.g. mass transfer), and then unravelling their impact on costs and life cycle, using reported flow chemistry studies as examples to underline the sustainability capability. This way, this review transitions from informing on how flow chemistry and microreactors can improve fundamental principles in chemical engineering and chemistry to their translation to improved sustainability. Gaps and opportunities in the reporting of microreactor/flow chemistry are identified. To put the reported achievements into perspective, a life cycle assessment (LCA) study is conducted that reports on the effects of the key levers, as identified in this study, for a flow chemistry reaction at the pilot scale, conducted at an industrial site (technology readiness level 4). This way, this study provides a quantitative forecast of what principally can be achieved when maximising the key levers, in terms of the individual LCA impact categories and their total average outcome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信