{"title":"利用模糊逻辑和 ANFIS 确定短期负荷预测模型","authors":"Vladimir Urošević","doi":"10.1007/s00500-024-09882-x","DOIUrl":null,"url":null,"abstract":"<p>Short-term load forecasting (STLF) usually begins by grouping data according to various criteria, most often by days of the week. Then, based on the obtained segments, independent models are created. Each model’s prediction uses only one segment of the data. This paper proposes a new approach to model formation based on the correlation between the forecasted day and previous days. The proposed approach is compared with the usual approach where data segments are obtained by grouping according to days of the week. The models were created using fuzzy logic and ANFIS. The mean absolute percentage errors of the new approach and the usual approach using ANFIS in terms of prediction accuracy are obtained as 2.89 and 4.15, respectively. The mean absolute percentage errors for the new approach and the usual approach are 3.39 and 4.78, respectively, when fuzzy logic is used. The results showed that when the proposed method is used, forecasts for the day ahead are much more accurate in both cases.</p>","PeriodicalId":22039,"journal":{"name":"Soft Computing","volume":"44 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the model for short-term load forecasting using fuzzy logic and ANFIS\",\"authors\":\"Vladimir Urošević\",\"doi\":\"10.1007/s00500-024-09882-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Short-term load forecasting (STLF) usually begins by grouping data according to various criteria, most often by days of the week. Then, based on the obtained segments, independent models are created. Each model’s prediction uses only one segment of the data. This paper proposes a new approach to model formation based on the correlation between the forecasted day and previous days. The proposed approach is compared with the usual approach where data segments are obtained by grouping according to days of the week. The models were created using fuzzy logic and ANFIS. The mean absolute percentage errors of the new approach and the usual approach using ANFIS in terms of prediction accuracy are obtained as 2.89 and 4.15, respectively. The mean absolute percentage errors for the new approach and the usual approach are 3.39 and 4.78, respectively, when fuzzy logic is used. The results showed that when the proposed method is used, forecasts for the day ahead are much more accurate in both cases.</p>\",\"PeriodicalId\":22039,\"journal\":{\"name\":\"Soft Computing\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00500-024-09882-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00500-024-09882-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Determining the model for short-term load forecasting using fuzzy logic and ANFIS
Short-term load forecasting (STLF) usually begins by grouping data according to various criteria, most often by days of the week. Then, based on the obtained segments, independent models are created. Each model’s prediction uses only one segment of the data. This paper proposes a new approach to model formation based on the correlation between the forecasted day and previous days. The proposed approach is compared with the usual approach where data segments are obtained by grouping according to days of the week. The models were created using fuzzy logic and ANFIS. The mean absolute percentage errors of the new approach and the usual approach using ANFIS in terms of prediction accuracy are obtained as 2.89 and 4.15, respectively. The mean absolute percentage errors for the new approach and the usual approach are 3.39 and 4.78, respectively, when fuzzy logic is used. The results showed that when the proposed method is used, forecasts for the day ahead are much more accurate in both cases.
期刊介绍:
Soft Computing is dedicated to system solutions based on soft computing techniques. It provides rapid dissemination of important results in soft computing technologies, a fusion of research in evolutionary algorithms and genetic programming, neural science and neural net systems, fuzzy set theory and fuzzy systems, and chaos theory and chaotic systems.
Soft Computing encourages the integration of soft computing techniques and tools into both everyday and advanced applications. By linking the ideas and techniques of soft computing with other disciplines, the journal serves as a unifying platform that fosters comparisons, extensions, and new applications. As a result, the journal is an international forum for all scientists and engineers engaged in research and development in this fast growing field.