Patrick Tritschler, Torsten Ohms, André Zimmermann, Fabian Zschocke, Thomas Strohm, Peter Degenfeld-Schonburg
{"title":"使用双模挤压光的光学干涉仪用于增强芯片集成量子计量学","authors":"Patrick Tritschler, Torsten Ohms, André Zimmermann, Fabian Zschocke, Thomas Strohm, Peter Degenfeld-Schonburg","doi":"10.1103/physreva.110.012621","DOIUrl":null,"url":null,"abstract":"This paper discusses the possibility of using two-mode squeezed light to improve the performance of existing sensor technology with the focus on its miniaturization under realistic losses. Therefore, we analyze a system consisting of a part for two-mode squeezed light generation, a sensor region, and a detection stage. Based on a general four-wave mixing (FWM) Hamiltonian caused by third-order susceptibility, we formulate linearized equations that describe the FWM process below the threshold and are used to analyze the squeezing quality of the generated optical signal and idler modes. For a possible realization, the focus is set on chip-integrated generation using microring resonators. To do so, the impacts of the design and the pump light are considered in the derived equations. These equations are used to analyze the usage of two-mode squeezed light in quantum metrology and the application in a Mach-Zehnder interferometer. Due to the impact of losses in realistic use cases, we show that the main usage is for small and compact devices, which can lead to a quantum improvement of up to a factor of 10 in comparison with using coherent light only. This enables the use of small squeezing-enhanced sensors with a performance comparable to larger classical sensors.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical interferometer using two-mode squeezed light for enhanced chip-integrated quantum metrology\",\"authors\":\"Patrick Tritschler, Torsten Ohms, André Zimmermann, Fabian Zschocke, Thomas Strohm, Peter Degenfeld-Schonburg\",\"doi\":\"10.1103/physreva.110.012621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the possibility of using two-mode squeezed light to improve the performance of existing sensor technology with the focus on its miniaturization under realistic losses. Therefore, we analyze a system consisting of a part for two-mode squeezed light generation, a sensor region, and a detection stage. Based on a general four-wave mixing (FWM) Hamiltonian caused by third-order susceptibility, we formulate linearized equations that describe the FWM process below the threshold and are used to analyze the squeezing quality of the generated optical signal and idler modes. For a possible realization, the focus is set on chip-integrated generation using microring resonators. To do so, the impacts of the design and the pump light are considered in the derived equations. These equations are used to analyze the usage of two-mode squeezed light in quantum metrology and the application in a Mach-Zehnder interferometer. Due to the impact of losses in realistic use cases, we show that the main usage is for small and compact devices, which can lead to a quantum improvement of up to a factor of 10 in comparison with using coherent light only. This enables the use of small squeezing-enhanced sensors with a performance comparable to larger classical sensors.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.012621\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.012621","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Optical interferometer using two-mode squeezed light for enhanced chip-integrated quantum metrology
This paper discusses the possibility of using two-mode squeezed light to improve the performance of existing sensor technology with the focus on its miniaturization under realistic losses. Therefore, we analyze a system consisting of a part for two-mode squeezed light generation, a sensor region, and a detection stage. Based on a general four-wave mixing (FWM) Hamiltonian caused by third-order susceptibility, we formulate linearized equations that describe the FWM process below the threshold and are used to analyze the squeezing quality of the generated optical signal and idler modes. For a possible realization, the focus is set on chip-integrated generation using microring resonators. To do so, the impacts of the design and the pump light are considered in the derived equations. These equations are used to analyze the usage of two-mode squeezed light in quantum metrology and the application in a Mach-Zehnder interferometer. Due to the impact of losses in realistic use cases, we show that the main usage is for small and compact devices, which can lead to a quantum improvement of up to a factor of 10 in comparison with using coherent light only. This enables the use of small squeezing-enhanced sensors with a performance comparable to larger classical sensors.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics