{"title":"离散结果传感器网络。II.多重检测事件和分组检测器","authors":"Nada Ali, Mark Hillery","doi":"10.1103/physreva.110.012619","DOIUrl":null,"url":null,"abstract":"Quantum sensor networks have often been studied in order to determine how accurately they can determine a parameter, such as the strength of a magnetic field, at one of the detectors. A more coarse-grained approach is to try to simply determine whether a detector has interacted with a signal or not, and which detector it was. Such discrete-outcome quantum sensor networks, discrete in the sense that we are seeking answers to yes-no questions, are what we study here. One issue is what is a good initial state for the network, and, in particular, should it be entangled or not. Earlier we looked at the case when only one detector interacted, and here we extend that study in two ways. First, we allow more than one detector to interact, and second, we examine the effect of grouping the detectors. When the detectors are grouped we are only interested in which group contained interacting detectors and not in which individual detectors within a group interacted. We find that in the case of grouping detectors, entangled initial states can be helpful.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete-outcome sensor networks. II. Multiple detection events and grouping detectors\",\"authors\":\"Nada Ali, Mark Hillery\",\"doi\":\"10.1103/physreva.110.012619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum sensor networks have often been studied in order to determine how accurately they can determine a parameter, such as the strength of a magnetic field, at one of the detectors. A more coarse-grained approach is to try to simply determine whether a detector has interacted with a signal or not, and which detector it was. Such discrete-outcome quantum sensor networks, discrete in the sense that we are seeking answers to yes-no questions, are what we study here. One issue is what is a good initial state for the network, and, in particular, should it be entangled or not. Earlier we looked at the case when only one detector interacted, and here we extend that study in two ways. First, we allow more than one detector to interact, and second, we examine the effect of grouping the detectors. When the detectors are grouped we are only interested in which group contained interacting detectors and not in which individual detectors within a group interacted. We find that in the case of grouping detectors, entangled initial states can be helpful.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.012619\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.012619","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Discrete-outcome sensor networks. II. Multiple detection events and grouping detectors
Quantum sensor networks have often been studied in order to determine how accurately they can determine a parameter, such as the strength of a magnetic field, at one of the detectors. A more coarse-grained approach is to try to simply determine whether a detector has interacted with a signal or not, and which detector it was. Such discrete-outcome quantum sensor networks, discrete in the sense that we are seeking answers to yes-no questions, are what we study here. One issue is what is a good initial state for the network, and, in particular, should it be entangled or not. Earlier we looked at the case when only one detector interacted, and here we extend that study in two ways. First, we allow more than one detector to interact, and second, we examine the effect of grouping the detectors. When the detectors are grouped we are only interested in which group contained interacting detectors and not in which individual detectors within a group interacted. We find that in the case of grouping detectors, entangled initial states can be helpful.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics