旭日量子伊星电池

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Akash Mitra, Shashi C. L. Srivastava
{"title":"旭日量子伊星电池","authors":"Akash Mitra, Shashi C. L. Srivastava","doi":"10.1103/physreva.110.012227","DOIUrl":null,"url":null,"abstract":"We study the energy-transfer process in the recently proposed sunburst quantum Ising model, which consists of two interacting integrable systems: a transverse Ising chain with a very small transverse field and a finite number of external isolated qubits. We show that in this model of the quantum battery, coupling between the battery and charger can be used to optimize the ergotropy, which is the maximum amount of energy that can be extracted from the battery. At the same time, maximum charging power increases with the coupling strength, allowing for the simultaneous optimization of both ergotropy and charging power in the strong-coupling limit. Furthermore, we show that both ergotropy and charging power are independent of the initial state of the charger.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sunburst quantum Ising battery\",\"authors\":\"Akash Mitra, Shashi C. L. Srivastava\",\"doi\":\"10.1103/physreva.110.012227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the energy-transfer process in the recently proposed sunburst quantum Ising model, which consists of two interacting integrable systems: a transverse Ising chain with a very small transverse field and a finite number of external isolated qubits. We show that in this model of the quantum battery, coupling between the battery and charger can be used to optimize the ergotropy, which is the maximum amount of energy that can be extracted from the battery. At the same time, maximum charging power increases with the coupling strength, allowing for the simultaneous optimization of both ergotropy and charging power in the strong-coupling limit. Furthermore, we show that both ergotropy and charging power are independent of the initial state of the charger.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.012227\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.012227","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了最近提出的旭日量子伊辛模型中的能量传递过程,该模型由两个相互作用的可积分系统组成:具有极小横向场的横向伊辛链和有限数量的外部孤立量子比特。我们的研究表明,在这个量子电池模型中,电池和充电器之间的耦合可以用来优化各向异性,也就是从电池中提取的最大能量。同时,最大充电功率会随着耦合强度的增加而增加,从而在强耦合极限下同时优化各向异性和充电功率。此外,我们还证明了各向同性和充电功率都与充电器的初始状态无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sunburst quantum Ising battery

Sunburst quantum Ising battery
We study the energy-transfer process in the recently proposed sunburst quantum Ising model, which consists of two interacting integrable systems: a transverse Ising chain with a very small transverse field and a finite number of external isolated qubits. We show that in this model of the quantum battery, coupling between the battery and charger can be used to optimize the ergotropy, which is the maximum amount of energy that can be extracted from the battery. At the same time, maximum charging power increases with the coupling strength, allowing for the simultaneous optimization of both ergotropy and charging power in the strong-coupling limit. Furthermore, we show that both ergotropy and charging power are independent of the initial state of the charger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信