SARS-CoV-2 病毒入侵细胞核和基因组的纳米成像技术

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"SARS-CoV-2 病毒入侵细胞核和基因组的纳米成像技术","authors":"","doi":"10.1016/j.xcrp.2024.102111","DOIUrl":null,"url":null,"abstract":"<p>The SARS-CoV-2 virus, responsible for the COVID-19 pandemic, has been linked to significant worldwide illness and death. Examining the ultrastructure and nanomechanical characteristics of SARS-CoV-2 viruses, from a physical standpoint, aids in categorizing their mechanical attributes, providing valuable information for novel treatment approaches and pinpointing susceptible regions that can guide precise medical interventions. This review presents the structural and mechanical characteristics of SARS-CoV-2 virus particles, focusing on their interaction with cells and their effects on nuclear pore transit and epigenetic modifications. We present the latest progress in utilizing a high-speed atomic force microscope for nanoscale observation of the SARS-CoV-2 virus and its constituents. SARS-CoV-2 viruses utilize several components to interact with the host’s nuclear transport receptors and the nucleoporins of the nuclear pore complex to influence the host’s nuclear transport and genome modality. In this review, we also provide an updated summary of how the parts of SARS-CoV-2 interact with the host’s nuclear transport system and how these interactions change the host’s chromatin.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"133 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoimaging of SARS-CoV-2 viral invasion toward the nucleus and genome\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The SARS-CoV-2 virus, responsible for the COVID-19 pandemic, has been linked to significant worldwide illness and death. Examining the ultrastructure and nanomechanical characteristics of SARS-CoV-2 viruses, from a physical standpoint, aids in categorizing their mechanical attributes, providing valuable information for novel treatment approaches and pinpointing susceptible regions that can guide precise medical interventions. This review presents the structural and mechanical characteristics of SARS-CoV-2 virus particles, focusing on their interaction with cells and their effects on nuclear pore transit and epigenetic modifications. We present the latest progress in utilizing a high-speed atomic force microscope for nanoscale observation of the SARS-CoV-2 virus and its constituents. SARS-CoV-2 viruses utilize several components to interact with the host’s nuclear transport receptors and the nucleoporins of the nuclear pore complex to influence the host’s nuclear transport and genome modality. In this review, we also provide an updated summary of how the parts of SARS-CoV-2 interact with the host’s nuclear transport system and how these interactions change the host’s chromatin.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102111\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102111","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

SARS-CoV-2 病毒是 COVID-19 大流行的罪魁祸首,在全球范围内造成了严重的疾病和死亡。从物理角度研究 SARS-CoV-2 病毒的超微结构和纳米机械特性,有助于对其机械属性进行分类,为新型治疗方法提供有价值的信息,并确定易感区域,从而指导精确的医疗干预措施。本综述介绍了 SARS-CoV-2 病毒颗粒的结构和机械特性,重点是它们与细胞的相互作用及其对核孔过境和表观遗传修饰的影响。我们介绍了利用高速原子力显微镜对 SARS-CoV-2 病毒及其成分进行纳米级观察的最新进展。SARS-CoV-2 病毒利用多种成分与宿主的核转运受体和核孔复合体的核蛋白相互作用,从而影响宿主的核转运和基因组模式。在这篇综述中,我们还对 SARS-CoV-2 的各个部分如何与宿主的核转运系统相互作用以及这些相互作用如何改变宿主的染色质进行了最新总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoimaging of SARS-CoV-2 viral invasion toward the nucleus and genome

Nanoimaging of SARS-CoV-2 viral invasion toward the nucleus and genome

The SARS-CoV-2 virus, responsible for the COVID-19 pandemic, has been linked to significant worldwide illness and death. Examining the ultrastructure and nanomechanical characteristics of SARS-CoV-2 viruses, from a physical standpoint, aids in categorizing their mechanical attributes, providing valuable information for novel treatment approaches and pinpointing susceptible regions that can guide precise medical interventions. This review presents the structural and mechanical characteristics of SARS-CoV-2 virus particles, focusing on their interaction with cells and their effects on nuclear pore transit and epigenetic modifications. We present the latest progress in utilizing a high-speed atomic force microscope for nanoscale observation of the SARS-CoV-2 virus and its constituents. SARS-CoV-2 viruses utilize several components to interact with the host’s nuclear transport receptors and the nucleoporins of the nuclear pore complex to influence the host’s nuclear transport and genome modality. In this review, we also provide an updated summary of how the parts of SARS-CoV-2 interact with the host’s nuclear transport system and how these interactions change the host’s chromatin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信