在致密介孔二氧化钛-碳复合材料中储存高容积伪电容钠

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"在致密介孔二氧化钛-碳复合材料中储存高容积伪电容钠","authors":"","doi":"10.1016/j.xcrp.2024.102123","DOIUrl":null,"url":null,"abstract":"<p>Transition metal oxides with small grain sizes are promising candidates for capacitive charge storage. However, the overall performance of such oxide materials is still limited by low tap density and finite conductivity. Here, we present a type of densely packed titanium dioxide (TiO<sub>2</sub>) composite that comprises three-dimensional aligned mesoporous TiO<sub>2</sub> microspheres and coated ultrathin mesoporous carbon shells. The fabricated mesoporous meso-TiO<sub>2</sub>@meso-C complex possesses a highly accessible surface area (134 m<sup>2</sup> g<sup>−1</sup>), dual mesopore channels (11.8 and 21.6 nm), and a much higher tap density (1.52 g cm<sup>−3</sup>). As expected, this designed mesoporous composite achieves superior electrochemical performance, including both a maximized specific capacity of 255 mAh g<sup>−1</sup> and a volumetric capacity of 390 mAh cm<sup>−3</sup> at 0.025 A g<sup>−1</sup>. Our mesoscopic composite electrode that enables fast redox reaction reveals the importance of incorporating conductive and dense mesostructures as an alternative pathway for high-volumetric pseudocapacitive materials.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"79 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-volumetric pseudocapacitive sodium storage in densely packed mesoporous titanium dioxide-carbon composite\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transition metal oxides with small grain sizes are promising candidates for capacitive charge storage. However, the overall performance of such oxide materials is still limited by low tap density and finite conductivity. Here, we present a type of densely packed titanium dioxide (TiO<sub>2</sub>) composite that comprises three-dimensional aligned mesoporous TiO<sub>2</sub> microspheres and coated ultrathin mesoporous carbon shells. The fabricated mesoporous meso-TiO<sub>2</sub>@meso-C complex possesses a highly accessible surface area (134 m<sup>2</sup> g<sup>−1</sup>), dual mesopore channels (11.8 and 21.6 nm), and a much higher tap density (1.52 g cm<sup>−3</sup>). As expected, this designed mesoporous composite achieves superior electrochemical performance, including both a maximized specific capacity of 255 mAh g<sup>−1</sup> and a volumetric capacity of 390 mAh cm<sup>−3</sup> at 0.025 A g<sup>−1</sup>. Our mesoscopic composite electrode that enables fast redox reaction reveals the importance of incorporating conductive and dense mesostructures as an alternative pathway for high-volumetric pseudocapacitive materials.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102123\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102123","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶粒尺寸较小的过渡金属氧化物是电容式电荷存储的理想候选材料。然而,这种氧化物材料的整体性能仍然受到低点密度和有限电导率的限制。在这里,我们提出了一种致密堆积的二氧化钛(TiO2)复合材料,它由三维排列的介孔二氧化钛微球和涂覆的超薄介孔碳壳组成。所制备的介孔介孔二氧化钛@介孔碳复合材料具有高可达表面积(134 m2 g-1)、双介孔通道(11.8 nm 和 21.6 nm)和更高的敲击密度(1.52 g cm-3)。不出所料,这种设计的介孔复合材料实现了卓越的电化学性能,包括 255 mAh g-1 的最大比容量和 0.025 A g-1 时 390 mAh cm-3 的体积容量。我们的介观复合电极可实现快速氧化还原反应,揭示了将导电致密介观结构作为高容量伪电容材料替代途径的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-volumetric pseudocapacitive sodium storage in densely packed mesoporous titanium dioxide-carbon composite

High-volumetric pseudocapacitive sodium storage in densely packed mesoporous titanium dioxide-carbon composite

Transition metal oxides with small grain sizes are promising candidates for capacitive charge storage. However, the overall performance of such oxide materials is still limited by low tap density and finite conductivity. Here, we present a type of densely packed titanium dioxide (TiO2) composite that comprises three-dimensional aligned mesoporous TiO2 microspheres and coated ultrathin mesoporous carbon shells. The fabricated mesoporous meso-TiO2@meso-C complex possesses a highly accessible surface area (134 m2 g−1), dual mesopore channels (11.8 and 21.6 nm), and a much higher tap density (1.52 g cm−3). As expected, this designed mesoporous composite achieves superior electrochemical performance, including both a maximized specific capacity of 255 mAh g−1 and a volumetric capacity of 390 mAh cm−3 at 0.025 A g−1. Our mesoscopic composite electrode that enables fast redox reaction reveals the importance of incorporating conductive and dense mesostructures as an alternative pathway for high-volumetric pseudocapacitive materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信