模仿贻贝足蛋白:坚固生物医学涂层的通用策略

IF 33.2 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zeyu Du, Feng Qiao, Liping Tong, Wentai Zhang, Xiaohui Mou, Xin Zhao, Manfred F. Maitz, Huaiyu Wang, Nan Huang, Zhilu Yang
{"title":"模仿贻贝足蛋白:坚固生物医学涂层的通用策略","authors":"Zeyu Du, Feng Qiao, Liping Tong, Wentai Zhang, Xiaohui Mou, Xin Zhao, Manfred F. Maitz, Huaiyu Wang, Nan Huang, Zhilu Yang","doi":"10.1016/j.xinn.2024.100671","DOIUrl":null,"url":null,"abstract":"Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo- foot protein 5 (-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5. CPAs can fabricate highly adhesive, robust, multifunctional polyCPA (PCPA) coatings based on synergetic catechol-polyamine chemistry as universal building blocks. Due to the interpenetrating entangled network architectures, these coatings exhibit high chemical robustness against harsh conditions (HCl, pH 1; NaOH, pH 14; HO, 30%), good mechanical robustness, and wear resistance. In addition, PCPA coatings provide abundant grafting sites, enabling the fabrication of various functional surfaces through secondary modification. Furthermore, the versatility, multifaceted robustness, and scalability of PCPA coatings indicate their great potential for surface engineering, especially for withstanding harsh conditions in multipurpose biomedical applications.","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"1 1","pages":""},"PeriodicalIF":33.2000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mimicking Mytilus edulis foot protein: A versatile strategy for robust biomedical coatings\",\"authors\":\"Zeyu Du, Feng Qiao, Liping Tong, Wentai Zhang, Xiaohui Mou, Xin Zhao, Manfred F. Maitz, Huaiyu Wang, Nan Huang, Zhilu Yang\",\"doi\":\"10.1016/j.xinn.2024.100671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo- foot protein 5 (-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5. CPAs can fabricate highly adhesive, robust, multifunctional polyCPA (PCPA) coatings based on synergetic catechol-polyamine chemistry as universal building blocks. Due to the interpenetrating entangled network architectures, these coatings exhibit high chemical robustness against harsh conditions (HCl, pH 1; NaOH, pH 14; HO, 30%), good mechanical robustness, and wear resistance. In addition, PCPA coatings provide abundant grafting sites, enabling the fabrication of various functional surfaces through secondary modification. Furthermore, the versatility, multifaceted robustness, and scalability of PCPA coatings indicate their great potential for surface engineering, especially for withstanding harsh conditions in multipurpose biomedical applications.\",\"PeriodicalId\":36121,\"journal\":{\"name\":\"The Innovation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":33.2000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Innovation\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xinn.2024.100671\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2024.100671","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有多功能表面附着力、良好的机械化学稳健性和二次改性能力的通用涂层具有极大的科学意义。然而,如何将这些优点整合到一个系统中仍然是一个巨大的挑战。在此,我们报告了一系列儿茶酚装饰的聚烯丙基胺(CPAs),它们不仅模仿了儿茶酚和胺基团,还模仿了 Mefp-5 的骨架,被称为伪足蛋白 5(-Mefp-5)。基于儿茶酚-多胺化学协同作用的通用构件,CPA 可以制造出高粘合性、坚固耐用的多功能聚CPA(PCPA)涂层。由于具有相互渗透的缠结网络结构,这些涂层在恶劣条件下(HCl,pH 1;NaOH,pH 14;HO,30%)表现出很高的化学稳健性、良好的机械稳健性和耐磨性。此外,PCPA 涂层还提供了丰富的接枝位点,可通过二次改性制造出各种功能表面。此外,PCPA 涂层的多功能性、多方面的坚固性和可扩展性也表明了其在表面工程方面的巨大潜力,特别是在多用途生物医学应用中承受恶劣条件方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mimicking Mytilus edulis foot protein: A versatile strategy for robust biomedical coatings
Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo- foot protein 5 (-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5. CPAs can fabricate highly adhesive, robust, multifunctional polyCPA (PCPA) coatings based on synergetic catechol-polyamine chemistry as universal building blocks. Due to the interpenetrating entangled network architectures, these coatings exhibit high chemical robustness against harsh conditions (HCl, pH 1; NaOH, pH 14; HO, 30%), good mechanical robustness, and wear resistance. In addition, PCPA coatings provide abundant grafting sites, enabling the fabrication of various functional surfaces through secondary modification. Furthermore, the versatility, multifaceted robustness, and scalability of PCPA coatings indicate their great potential for surface engineering, especially for withstanding harsh conditions in multipurpose biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信