{"title":"有限尺寸仓本坂口模型的随机近似值","authors":"Wenqi Yue, Georg A. Gottwald","doi":"10.1016/j.physd.2024.134292","DOIUrl":null,"url":null,"abstract":"<div><p>We perform a stochastic model reduction of the Kuramoto–Sakaguchi model for finitely many coupled phase oscillators with phase frustration. Whereas in the thermodynamic limit coupled oscillators exhibit stationary states and a constant order parameter, finite-size networks exhibit persistent temporal fluctuations of the order parameter. These fluctuations are caused by the interaction of the synchronised oscillators with the non-entrained oscillators. We present numerical results suggesting that the collective effect of the non-entrained oscillators on the synchronised cluster can be approximated by a Gaussian process. This allows for an effective closed evolution equation for the synchronised oscillators driven by a Gaussian process which we approximate by a two-dimensional Ornstein–Uhlenbeck process. Our reduction reproduces the stochastic fluctuations of the order parameter and leads to a simple stochastic differential equation for the order parameter.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002434/pdfft?md5=357906f7bc2a4bfd31b99c9a9101b6df&pid=1-s2.0-S0167278924002434-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A stochastic approximation for the finite-size Kuramoto–Sakaguchi model\",\"authors\":\"Wenqi Yue, Georg A. Gottwald\",\"doi\":\"10.1016/j.physd.2024.134292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We perform a stochastic model reduction of the Kuramoto–Sakaguchi model for finitely many coupled phase oscillators with phase frustration. Whereas in the thermodynamic limit coupled oscillators exhibit stationary states and a constant order parameter, finite-size networks exhibit persistent temporal fluctuations of the order parameter. These fluctuations are caused by the interaction of the synchronised oscillators with the non-entrained oscillators. We present numerical results suggesting that the collective effect of the non-entrained oscillators on the synchronised cluster can be approximated by a Gaussian process. This allows for an effective closed evolution equation for the synchronised oscillators driven by a Gaussian process which we approximate by a two-dimensional Ornstein–Uhlenbeck process. Our reduction reproduces the stochastic fluctuations of the order parameter and leads to a simple stochastic differential equation for the order parameter.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002434/pdfft?md5=357906f7bc2a4bfd31b99c9a9101b6df&pid=1-s2.0-S0167278924002434-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A stochastic approximation for the finite-size Kuramoto–Sakaguchi model
We perform a stochastic model reduction of the Kuramoto–Sakaguchi model for finitely many coupled phase oscillators with phase frustration. Whereas in the thermodynamic limit coupled oscillators exhibit stationary states and a constant order parameter, finite-size networks exhibit persistent temporal fluctuations of the order parameter. These fluctuations are caused by the interaction of the synchronised oscillators with the non-entrained oscillators. We present numerical results suggesting that the collective effect of the non-entrained oscillators on the synchronised cluster can be approximated by a Gaussian process. This allows for an effective closed evolution equation for the synchronised oscillators driven by a Gaussian process which we approximate by a two-dimensional Ornstein–Uhlenbeck process. Our reduction reproduces the stochastic fluctuations of the order parameter and leads to a simple stochastic differential equation for the order parameter.