论随机动力系统的卡图甘波拉分形积分和分形盆地边界的维度分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Binyan Yu, Yongshun Liang
{"title":"论随机动力系统的卡图甘波拉分形积分和分形盆地边界的维度分析","authors":"Binyan Yu,&nbsp;Yongshun Liang","doi":"10.1016/j.physd.2024.134289","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we mainly investigate the geometric based relationship between the Katugampola fractional calculus and a Weierstrass-type function whose graph can be characterized as a fractal basin boundary for a random dynamical system. Using the potential-theoretic approach with some classical analytical tools, we have derived some kinds of fractal dimensions of the graph of the Katugampola fractional integral of this fractal function. It has been shown that there is a linear relationship between the order of the Katugampola fractional integral and the fractal dimension of the graph of this generalized Weierstrass function. Numerical results have also been provided to corroborate such linear connection.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Katugampola fractional integral and dimensional analysis of the fractal basin boundary for a random dynamical system\",\"authors\":\"Binyan Yu,&nbsp;Yongshun Liang\",\"doi\":\"10.1016/j.physd.2024.134289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we mainly investigate the geometric based relationship between the Katugampola fractional calculus and a Weierstrass-type function whose graph can be characterized as a fractal basin boundary for a random dynamical system. Using the potential-theoretic approach with some classical analytical tools, we have derived some kinds of fractal dimensions of the graph of the Katugampola fractional integral of this fractal function. It has been shown that there is a linear relationship between the order of the Katugampola fractional integral and the fractal dimension of the graph of this generalized Weierstrass function. Numerical results have also been provided to corroborate such linear connection.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究卡图冈波拉分形微积分与魏尔斯特拉斯(Weierstrass)型函数之间基于几何的关系,该函数的图可以表征为随机动力系统的分形盆地边界。利用势论方法和一些经典分析工具,我们推导出了该分形函数的卡图甘波拉分形积分图的一些分形维数。研究表明,卡图甘波拉分形积分的阶数与这个广义韦尔斯特拉斯函数图形的分形维度之间存在线性关系。数值结果也证实了这种线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Katugampola fractional integral and dimensional analysis of the fractal basin boundary for a random dynamical system

In this paper, we mainly investigate the geometric based relationship between the Katugampola fractional calculus and a Weierstrass-type function whose graph can be characterized as a fractal basin boundary for a random dynamical system. Using the potential-theoretic approach with some classical analytical tools, we have derived some kinds of fractal dimensions of the graph of the Katugampola fractional integral of this fractal function. It has been shown that there is a linear relationship between the order of the Katugampola fractional integral and the fractal dimension of the graph of this generalized Weierstrass function. Numerical results have also been provided to corroborate such linear connection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信