椭圆三体问题碰撞点周围的动力学:正态方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alessandra Celletti, Christoph Lhotka, Giuseppe Pucacco
{"title":"椭圆三体问题碰撞点周围的动力学:正态方法","authors":"Alessandra Celletti,&nbsp;Christoph Lhotka,&nbsp;Giuseppe Pucacco","doi":"10.1016/j.physd.2024.134302","DOIUrl":null,"url":null,"abstract":"<div><p>We study the dynamics of the collinear points in the planar, restricted three-body problem, assuming that the primaries move on an elliptic orbit around a common barycenter. The equations of motion can be conveniently written in a rotating–pulsating barycentric frame, taking the true anomaly as independent variable. We consider the Hamiltonian modeling this problem in the extended phase space and we implement a normal form to make a center manifold reduction. The normal form provides an approximate solution for the Cartesian coordinates, which allows us to construct several kinds of orbits, most notably planar and vertical Lyapunov orbits, and halo orbits. We compare the analytical results with a numerical simulation, which requires special care in the selection of the initial conditions.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002537/pdfft?md5=dfdebd1f1709dccc241cf0cdc422ea88&pid=1-s2.0-S0167278924002537-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The dynamics around the collinear points of the elliptic three-body problem: A normal form approach\",\"authors\":\"Alessandra Celletti,&nbsp;Christoph Lhotka,&nbsp;Giuseppe Pucacco\",\"doi\":\"10.1016/j.physd.2024.134302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the dynamics of the collinear points in the planar, restricted three-body problem, assuming that the primaries move on an elliptic orbit around a common barycenter. The equations of motion can be conveniently written in a rotating–pulsating barycentric frame, taking the true anomaly as independent variable. We consider the Hamiltonian modeling this problem in the extended phase space and we implement a normal form to make a center manifold reduction. The normal form provides an approximate solution for the Cartesian coordinates, which allows us to construct several kinds of orbits, most notably planar and vertical Lyapunov orbits, and halo orbits. We compare the analytical results with a numerical simulation, which requires special care in the selection of the initial conditions.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002537/pdfft?md5=dfdebd1f1709dccc241cf0cdc422ea88&pid=1-s2.0-S0167278924002537-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了平面受限三体问题中碰撞点的动力学,假设原点在围绕共同原心的椭圆轨道上运动。以真实反常为自变量,运动方程可以方便地写入旋转脉动重心框架。我们考虑了在扩展相空间中模拟这一问题的哈密顿模型,并采用了一种正则表达式来进行中心流形还原。正则表达式提供了笛卡尔坐标的近似解,使我们能够构建几种轨道,尤其是平面和垂直 Lyapunov 轨道以及晕轨道。我们将分析结果与数值模拟进行了比较,数值模拟需要特别注意初始条件的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dynamics around the collinear points of the elliptic three-body problem: A normal form approach

We study the dynamics of the collinear points in the planar, restricted three-body problem, assuming that the primaries move on an elliptic orbit around a common barycenter. The equations of motion can be conveniently written in a rotating–pulsating barycentric frame, taking the true anomaly as independent variable. We consider the Hamiltonian modeling this problem in the extended phase space and we implement a normal form to make a center manifold reduction. The normal form provides an approximate solution for the Cartesian coordinates, which allows us to construct several kinds of orbits, most notably planar and vertical Lyapunov orbits, and halo orbits. We compare the analytical results with a numerical simulation, which requires special care in the selection of the initial conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信