Shijie Xie , Zheyuan Jiang , Hang Lin , Tianxing Ma , Kang Peng , Hongwei Liu , Baohua Liu
{"title":"预测接头剪切强度的新型集成智能计算范例","authors":"Shijie Xie , Zheyuan Jiang , Hang Lin , Tianxing Ma , Kang Peng , Hongwei Liu , Baohua Liu","doi":"10.1016/j.gsf.2024.101884","DOIUrl":null,"url":null,"abstract":"<div><p>Joints shear strength is a critical parameter during the design and construction of geotechnical engineering structures. The prevailing models mostly adopt the form of empirical functions, employing mathematical regression techniques to represent experimental data. As an alternative approach, this paper proposes a new integrated intelligent computing paradigm that aims to predict joints shear strength. Five metaheuristic optimization algorithms, including the chameleon swarm algorithm (CSA), slime mold algorithm, transient search optimization algorithm, equilibrium optimizer and social network search algorithm, were employed to enhance the performance of the multilayered perception (MLP) model. Efficiency comparisons were conducted between the proposed CSA-MLP model and twelve classical models, employing statistical indicators such as root mean square error (<em>RMSE</em>), correlation coefficient (<em>R</em><sup>2</sup>), mean absolute error (<em>MAE</em>), and variance accounted for (<em>VAF</em>) to evaluate the performance of each model. The sensitivity analysis of parameters that impact joints shear strength was conducted. Finally, the feasibility and limitations of this study were discussed. The results revealed that, in comparison to other models, the CSA-MLP model exhibited the most appropriate performance in terms of <em>R</em><sup>2</sup> (0.88), <em>RMSE</em> (0.19), <em>MAE</em> (0.15), and <em>VAF</em> (90.32%) values. The result of sensitivity analysis showed that the normal stress and the joint roughness coefficient were the most critical factors influencing joints shear strength. This paper presented an efficacious attempt toward swift prediction of joints shear strength, thus avoiding the need for costly in-site and laboratory tests.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"15 6","pages":"Article 101884"},"PeriodicalIF":8.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674987124001087/pdfft?md5=73339df52a8d7bff7cac10fee836eaf1&pid=1-s2.0-S1674987124001087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new integrated intelligent computing paradigm for predicting joints shear strength\",\"authors\":\"Shijie Xie , Zheyuan Jiang , Hang Lin , Tianxing Ma , Kang Peng , Hongwei Liu , Baohua Liu\",\"doi\":\"10.1016/j.gsf.2024.101884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Joints shear strength is a critical parameter during the design and construction of geotechnical engineering structures. The prevailing models mostly adopt the form of empirical functions, employing mathematical regression techniques to represent experimental data. As an alternative approach, this paper proposes a new integrated intelligent computing paradigm that aims to predict joints shear strength. Five metaheuristic optimization algorithms, including the chameleon swarm algorithm (CSA), slime mold algorithm, transient search optimization algorithm, equilibrium optimizer and social network search algorithm, were employed to enhance the performance of the multilayered perception (MLP) model. Efficiency comparisons were conducted between the proposed CSA-MLP model and twelve classical models, employing statistical indicators such as root mean square error (<em>RMSE</em>), correlation coefficient (<em>R</em><sup>2</sup>), mean absolute error (<em>MAE</em>), and variance accounted for (<em>VAF</em>) to evaluate the performance of each model. The sensitivity analysis of parameters that impact joints shear strength was conducted. Finally, the feasibility and limitations of this study were discussed. The results revealed that, in comparison to other models, the CSA-MLP model exhibited the most appropriate performance in terms of <em>R</em><sup>2</sup> (0.88), <em>RMSE</em> (0.19), <em>MAE</em> (0.15), and <em>VAF</em> (90.32%) values. The result of sensitivity analysis showed that the normal stress and the joint roughness coefficient were the most critical factors influencing joints shear strength. This paper presented an efficacious attempt toward swift prediction of joints shear strength, thus avoiding the need for costly in-site and laboratory tests.</p></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"15 6\",\"pages\":\"Article 101884\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674987124001087/pdfft?md5=73339df52a8d7bff7cac10fee836eaf1&pid=1-s2.0-S1674987124001087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674987124001087\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124001087","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A new integrated intelligent computing paradigm for predicting joints shear strength
Joints shear strength is a critical parameter during the design and construction of geotechnical engineering structures. The prevailing models mostly adopt the form of empirical functions, employing mathematical regression techniques to represent experimental data. As an alternative approach, this paper proposes a new integrated intelligent computing paradigm that aims to predict joints shear strength. Five metaheuristic optimization algorithms, including the chameleon swarm algorithm (CSA), slime mold algorithm, transient search optimization algorithm, equilibrium optimizer and social network search algorithm, were employed to enhance the performance of the multilayered perception (MLP) model. Efficiency comparisons were conducted between the proposed CSA-MLP model and twelve classical models, employing statistical indicators such as root mean square error (RMSE), correlation coefficient (R2), mean absolute error (MAE), and variance accounted for (VAF) to evaluate the performance of each model. The sensitivity analysis of parameters that impact joints shear strength was conducted. Finally, the feasibility and limitations of this study were discussed. The results revealed that, in comparison to other models, the CSA-MLP model exhibited the most appropriate performance in terms of R2 (0.88), RMSE (0.19), MAE (0.15), and VAF (90.32%) values. The result of sensitivity analysis showed that the normal stress and the joint roughness coefficient were the most critical factors influencing joints shear strength. This paper presented an efficacious attempt toward swift prediction of joints shear strength, thus avoiding the need for costly in-site and laboratory tests.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.