{"title":"具有高离子传导性的三维多孔海绵状 Ti3C2Tx MXene/Polyvinyl Alcohol/Agar 凝胶电解质可实现高度可逆的锌-离子电池","authors":"Chun Hu, Wenxin Zhang, Jinmei Zhang, Xiaojing Zhao, Chunyan Xu, Liying Yang, Ningyi Jiang, Shougen Yin","doi":"10.1002/ente.202400772","DOIUrl":null,"url":null,"abstract":"<p>Gel electrolyte is one of the key components of flexible energy storage devices. The construction of a three-dimensional (3D) porous gel electrolyte with high ionic conductivity is a very effective strategy to improve the performance of zinc-ion batteries (ZIBs). Herein, porous polyvinyl alcohol-Agar-sodium dodecyl sulfate-MXene-dimethyl sulfoxide (DMSO) (denoted as PVA-Agar-SDS-MXene-DMSO (PASMD)) gel electrolyte with double network is prepared through one-pot method by adding two-dimensional (2D) MXene to improve its ionic conductivity and DMSO to increase its low-temperature resistance. Meanwhile, the as-prepared PASMD gel electrolyte with a high ionic conductivity of 50.63 mS cm<sup>−1</sup> realizes the gradient induction and redistribution of Zn<sup>2+</sup>, which drives oriented Zn (002) plane deposition of Zn<sup>2+</sup> and then achieves uniform Zn deposition and dendrite-free anode. The specific capacity of the assembled flexible Zn//PASMD//β-MnO<sub>2</sub> battery can reach 205 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>. It also exhibits good performance both at room temperature and −20 °C with stable cyclic stability for more than 1000 h. After 1000 cycles at 1 A g<sup>−1</sup>, the assembled flexible battery stabilizes at 67 mAh g<sup>−1</sup>. This work provides an alternative pathway for the development of high-performance gel electrolytes with low-temperature resistance and high-ionic conductivity for flexible ZIBs.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Porous Spongy Ti3C2Tx MXene/Polyvinyl Alcohol/Agar Gel Electrolyte with High Ionic Conductivity Enables Highly Reversible Zinc-Ion Batteries\",\"authors\":\"Chun Hu, Wenxin Zhang, Jinmei Zhang, Xiaojing Zhao, Chunyan Xu, Liying Yang, Ningyi Jiang, Shougen Yin\",\"doi\":\"10.1002/ente.202400772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gel electrolyte is one of the key components of flexible energy storage devices. The construction of a three-dimensional (3D) porous gel electrolyte with high ionic conductivity is a very effective strategy to improve the performance of zinc-ion batteries (ZIBs). Herein, porous polyvinyl alcohol-Agar-sodium dodecyl sulfate-MXene-dimethyl sulfoxide (DMSO) (denoted as PVA-Agar-SDS-MXene-DMSO (PASMD)) gel electrolyte with double network is prepared through one-pot method by adding two-dimensional (2D) MXene to improve its ionic conductivity and DMSO to increase its low-temperature resistance. Meanwhile, the as-prepared PASMD gel electrolyte with a high ionic conductivity of 50.63 mS cm<sup>−1</sup> realizes the gradient induction and redistribution of Zn<sup>2+</sup>, which drives oriented Zn (002) plane deposition of Zn<sup>2+</sup> and then achieves uniform Zn deposition and dendrite-free anode. The specific capacity of the assembled flexible Zn//PASMD//β-MnO<sub>2</sub> battery can reach 205 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>. It also exhibits good performance both at room temperature and −20 °C with stable cyclic stability for more than 1000 h. After 1000 cycles at 1 A g<sup>−1</sup>, the assembled flexible battery stabilizes at 67 mAh g<sup>−1</sup>. This work provides an alternative pathway for the development of high-performance gel electrolytes with low-temperature resistance and high-ionic conductivity for flexible ZIBs.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400772\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400772","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
凝胶电解质是柔性储能设备的关键部件之一。构建具有高离子电导率的三维(3D)多孔凝胶电解质是提高锌离子电池(ZIB)性能的有效策略。本文通过一锅法制备了具有双网络的多孔聚乙烯醇-琼脂-十二烷基硫酸钠-MXene-二甲基亚砜(DMSO)(简称 PVA-Agar-SDS-MXene-DMSO (PASMD))凝胶电解质。同时,所制备的 PASMD 凝胶电解质具有 50.63 mS cm-1 的高离子电导率,实现了 Zn2+ 的梯度诱导和再分布,推动了 Zn2+ 的定向 Zn (002) 平面沉积,进而实现了 Zn 的均匀沉积和无枝晶阳极。组装后的柔性 Zn//PASMD//β-MnO2 电池在 0.2 A g-1 电流条件下的比容量可达 205 mAh g-1。在 1 A g-1 的条件下循环 1000 次后,组装的柔性电池稳定在 67 mAh g-1 的水平。这项研究为开发具有低温抗性和高离子导电性的高性能凝胶电解质提供了另一条途径,可用于柔性 ZIB。
Three-Dimensional Porous Spongy Ti3C2Tx MXene/Polyvinyl Alcohol/Agar Gel Electrolyte with High Ionic Conductivity Enables Highly Reversible Zinc-Ion Batteries
Gel electrolyte is one of the key components of flexible energy storage devices. The construction of a three-dimensional (3D) porous gel electrolyte with high ionic conductivity is a very effective strategy to improve the performance of zinc-ion batteries (ZIBs). Herein, porous polyvinyl alcohol-Agar-sodium dodecyl sulfate-MXene-dimethyl sulfoxide (DMSO) (denoted as PVA-Agar-SDS-MXene-DMSO (PASMD)) gel electrolyte with double network is prepared through one-pot method by adding two-dimensional (2D) MXene to improve its ionic conductivity and DMSO to increase its low-temperature resistance. Meanwhile, the as-prepared PASMD gel electrolyte with a high ionic conductivity of 50.63 mS cm−1 realizes the gradient induction and redistribution of Zn2+, which drives oriented Zn (002) plane deposition of Zn2+ and then achieves uniform Zn deposition and dendrite-free anode. The specific capacity of the assembled flexible Zn//PASMD//β-MnO2 battery can reach 205 mAh g−1 at 0.2 A g−1. It also exhibits good performance both at room temperature and −20 °C with stable cyclic stability for more than 1000 h. After 1000 cycles at 1 A g−1, the assembled flexible battery stabilizes at 67 mAh g−1. This work provides an alternative pathway for the development of high-performance gel electrolytes with low-temperature resistance and high-ionic conductivity for flexible ZIBs.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.