双金属 NiCo2S4 纳米棒协同催化剂修饰花状 Zn3In2S6 微球,用于可见光驱动的高效光催化制氢

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Lan Wang, Shuo Zhang, Feng Yue, Cong Li, Bang Tan, Chenhao Luo, Silvia Zamponi, Hongzhong Zhang
{"title":"双金属 NiCo2S4 纳米棒协同催化剂修饰花状 Zn3In2S6 微球,用于可见光驱动的高效光催化制氢","authors":"Lan Wang,&nbsp;Shuo Zhang,&nbsp;Feng Yue,&nbsp;Cong Li,&nbsp;Bang Tan,&nbsp;Chenhao Luo,&nbsp;Silvia Zamponi,&nbsp;Hongzhong Zhang","doi":"10.1002/ente.202400936","DOIUrl":null,"url":null,"abstract":"<p>Establishing Schottky barriers is a key tactic for enhancing the separation of photogenerated charge carriers and improving photocatalytic efficiency. Herein, a self-assembled metal cocatalyst, NiCo<sub>2</sub>S<sub>4</sub> nanorod, is loaded onto the flower-like Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> microsphere via a hydrothermal method. Under visible light irradiation, the NiCo<sub>2</sub>S<sub>4</sub>/Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> composite material achieves a peak H<sub>2</sub> production rate of 3436.72 μmol g<sup>−1</sup> h<sup>−1</sup> within 6 h, marking a 5.4 times greater increase compared to pristine Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>. This outperforms the maximum H<sub>2</sub> production rate of Pt/Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>-1% within the same 6-hour timeframe, which is 3323.05 μmol g<sup>−1</sup> h<sup>−1</sup>. Additionally, the apparent quantum efficiency reaches 7.86% at 420 nm. The outstanding photocatalytic activity stems from the synergistic effects between the visible-light-active Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> and the conductive cocatalyst NiCo<sub>2</sub>S<sub>4</sub>, facilitating spatial electrical promotion. In particular, the formation of a Schottky junction at the interface of NiCo<sub>2</sub>S<sub>4</sub>/Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> enables prompt electron transfer to NiCo<sub>2</sub>S<sub>4</sub> nanorods, preventing backflow and thereby promoting the efficient separation of photogenerated charge carriers. Finally, a plausible reaction mechanism is proposed, drawing from the electrochemical characterization results. Thus, this research provides a new approach for designing metal-semiconductor photocatalysts that are efficient in photocatalytic H<sub>2</sub> production through water splitting.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimetallic NiCo2S4 Nanorod Cocatalyst Modified the Flower-Like Zn3In2S6 Microsphere for Visible-Light-Driven High-Efficiency Photocatalytic Hydrogen Production\",\"authors\":\"Lan Wang,&nbsp;Shuo Zhang,&nbsp;Feng Yue,&nbsp;Cong Li,&nbsp;Bang Tan,&nbsp;Chenhao Luo,&nbsp;Silvia Zamponi,&nbsp;Hongzhong Zhang\",\"doi\":\"10.1002/ente.202400936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Establishing Schottky barriers is a key tactic for enhancing the separation of photogenerated charge carriers and improving photocatalytic efficiency. Herein, a self-assembled metal cocatalyst, NiCo<sub>2</sub>S<sub>4</sub> nanorod, is loaded onto the flower-like Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> microsphere via a hydrothermal method. Under visible light irradiation, the NiCo<sub>2</sub>S<sub>4</sub>/Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> composite material achieves a peak H<sub>2</sub> production rate of 3436.72 μmol g<sup>−1</sup> h<sup>−1</sup> within 6 h, marking a 5.4 times greater increase compared to pristine Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>. This outperforms the maximum H<sub>2</sub> production rate of Pt/Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>-1% within the same 6-hour timeframe, which is 3323.05 μmol g<sup>−1</sup> h<sup>−1</sup>. Additionally, the apparent quantum efficiency reaches 7.86% at 420 nm. The outstanding photocatalytic activity stems from the synergistic effects between the visible-light-active Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> and the conductive cocatalyst NiCo<sub>2</sub>S<sub>4</sub>, facilitating spatial electrical promotion. In particular, the formation of a Schottky junction at the interface of NiCo<sub>2</sub>S<sub>4</sub>/Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> enables prompt electron transfer to NiCo<sub>2</sub>S<sub>4</sub> nanorods, preventing backflow and thereby promoting the efficient separation of photogenerated charge carriers. Finally, a plausible reaction mechanism is proposed, drawing from the electrochemical characterization results. Thus, this research provides a new approach for designing metal-semiconductor photocatalysts that are efficient in photocatalytic H<sub>2</sub> production through water splitting.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400936\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400936","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

建立肖特基势垒是加强光生电荷载流子分离和提高光催化效率的关键策略。本文通过水热法将自组装金属茧催化剂 NiCo2S4 纳米棒负载到花状 Zn3In2S6 微球上。在可见光照射下,NiCo2S4/Zn3In2S6 复合材料在 6 小时内达到了 3436.72 μmol g-1 h-1 的峰值 H2 产率,是原始 Zn3In2S6 产率的 5.4 倍。这超过了 Pt/Zn3In2S6-1% 在相同的 6 小时时间框架内的最大 H2 产率(3323.05 μmol g-1 h-1)。此外,在 420 纳米波长下,表观量子效率达到 7.86%。出色的光催化活性源于可见光活性 Zn3In2S6 与导电助催化剂 NiCo2S4 之间的协同效应,从而促进了空间电促进作用。特别是,在 NiCo2S4/Zn3In2S6 的界面上形成的肖特基结能使电子迅速转移到 NiCo2S4 纳米棒上,防止回流,从而促进光生电荷载流子的有效分离。最后,根据电化学表征结果提出了一种合理的反应机制。因此,这项研究为设计金属半导体光催化剂提供了一种新方法,这种光催化剂可通过水的分裂高效地光催化产生 H2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimetallic NiCo2S4 Nanorod Cocatalyst Modified the Flower-Like Zn3In2S6 Microsphere for Visible-Light-Driven High-Efficiency Photocatalytic Hydrogen Production

Establishing Schottky barriers is a key tactic for enhancing the separation of photogenerated charge carriers and improving photocatalytic efficiency. Herein, a self-assembled metal cocatalyst, NiCo2S4 nanorod, is loaded onto the flower-like Zn3In2S6 microsphere via a hydrothermal method. Under visible light irradiation, the NiCo2S4/Zn3In2S6 composite material achieves a peak H2 production rate of 3436.72 μmol g−1 h−1 within 6 h, marking a 5.4 times greater increase compared to pristine Zn3In2S6. This outperforms the maximum H2 production rate of Pt/Zn3In2S6-1% within the same 6-hour timeframe, which is 3323.05 μmol g−1 h−1. Additionally, the apparent quantum efficiency reaches 7.86% at 420 nm. The outstanding photocatalytic activity stems from the synergistic effects between the visible-light-active Zn3In2S6 and the conductive cocatalyst NiCo2S4, facilitating spatial electrical promotion. In particular, the formation of a Schottky junction at the interface of NiCo2S4/Zn3In2S6 enables prompt electron transfer to NiCo2S4 nanorods, preventing backflow and thereby promoting the efficient separation of photogenerated charge carriers. Finally, a plausible reaction mechanism is proposed, drawing from the electrochemical characterization results. Thus, this research provides a new approach for designing metal-semiconductor photocatalysts that are efficient in photocatalytic H2 production through water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信