{"title":"强化热再循环预混合气体的火焰传播:贫燃烧和富燃烧的动态特性","authors":"Huaming Dai, Chongxue Zou, Xinyi Wang, Zhaoxing Guo, Yi Yang, Shuailin Lv, Zhuang Jiang","doi":"10.1002/ente.202400872","DOIUrl":null,"url":null,"abstract":"<p>Porous media combustion greatly improves the combustion of low calorific value gas (LCG), and appropriate heat control contributes to optimizing the flame evolution. To obtain the dynamic characteristics of lean-rich combustion, an enhanced heat-recirculating burner is built by embedding the cylindrical rod with high thermal conductivity. The temperature distribution and gas products are investigated under different rod parameters and operating conditions. The results indicate that the reduction of the equivalence ratio and inlet velocity are both beneficial for the upstream propagation of rich-methane flame, which has an opposite trend to lean combustion. Regardless of the direction in which the rich-methane flame propagates, the flame propagates the fastest as the diameter of the cylindrical rod is 8 mm. When the 8–120 cylindrical rod is embedded in the burner, the downstream propagation time is shortened by 73.40%. The appropriate embedment of the cylindrical rods in porous media not only accelerates the rich-methane flame propagation but also promotes the conversion of methane to syngas. Moreover, the decrease in pellet diameter is also conducive to increasing syngas production. The above conclusions provide theoretical support for the efficient and clean utilization of LCG in the porous media.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flame Propagation of Premixed Gas with Enhanced Heat Recirculation: Dynamic Characteristics of Lean and Rich Combustion\",\"authors\":\"Huaming Dai, Chongxue Zou, Xinyi Wang, Zhaoxing Guo, Yi Yang, Shuailin Lv, Zhuang Jiang\",\"doi\":\"10.1002/ente.202400872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Porous media combustion greatly improves the combustion of low calorific value gas (LCG), and appropriate heat control contributes to optimizing the flame evolution. To obtain the dynamic characteristics of lean-rich combustion, an enhanced heat-recirculating burner is built by embedding the cylindrical rod with high thermal conductivity. The temperature distribution and gas products are investigated under different rod parameters and operating conditions. The results indicate that the reduction of the equivalence ratio and inlet velocity are both beneficial for the upstream propagation of rich-methane flame, which has an opposite trend to lean combustion. Regardless of the direction in which the rich-methane flame propagates, the flame propagates the fastest as the diameter of the cylindrical rod is 8 mm. When the 8–120 cylindrical rod is embedded in the burner, the downstream propagation time is shortened by 73.40%. The appropriate embedment of the cylindrical rods in porous media not only accelerates the rich-methane flame propagation but also promotes the conversion of methane to syngas. Moreover, the decrease in pellet diameter is also conducive to increasing syngas production. The above conclusions provide theoretical support for the efficient and clean utilization of LCG in the porous media.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400872\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400872","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Flame Propagation of Premixed Gas with Enhanced Heat Recirculation: Dynamic Characteristics of Lean and Rich Combustion
Porous media combustion greatly improves the combustion of low calorific value gas (LCG), and appropriate heat control contributes to optimizing the flame evolution. To obtain the dynamic characteristics of lean-rich combustion, an enhanced heat-recirculating burner is built by embedding the cylindrical rod with high thermal conductivity. The temperature distribution and gas products are investigated under different rod parameters and operating conditions. The results indicate that the reduction of the equivalence ratio and inlet velocity are both beneficial for the upstream propagation of rich-methane flame, which has an opposite trend to lean combustion. Regardless of the direction in which the rich-methane flame propagates, the flame propagates the fastest as the diameter of the cylindrical rod is 8 mm. When the 8–120 cylindrical rod is embedded in the burner, the downstream propagation time is shortened by 73.40%. The appropriate embedment of the cylindrical rods in porous media not only accelerates the rich-methane flame propagation but also promotes the conversion of methane to syngas. Moreover, the decrease in pellet diameter is also conducive to increasing syngas production. The above conclusions provide theoretical support for the efficient and clean utilization of LCG in the porous media.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.