利用支持向量回归和人工神经网络的灰盒模型为化工厂建模

Mahmood Ghasemi, Hooshang Jazayeri‐Rad, Reza Mosayebi Behbahani
{"title":"利用支持向量回归和人工神经网络的灰盒模型为化工厂建模","authors":"Mahmood Ghasemi, Hooshang Jazayeri‐Rad, Reza Mosayebi Behbahani","doi":"10.1002/cjce.25416","DOIUrl":null,"url":null,"abstract":"In this work, the performances of a nonlinear dynamic industrial process are examined using grey‐box (GB) models. To understand the dynamics of the system, the transient state is targeted. A white‐box (WB) model holds the prevailing knowledge using some assumptions. The performance of this model is limited. Artificial neural network (ANN) and support vector regression (SVR), which are techniques employed in numerous chemical engineering applications, are employed to construct the associated black‐box (BB) models. GA is used to optimize the SVR parameters. Dimensional and range extrapolations of different manipulated inputs, feed concentrations, feed temperatures, and cooling temperatures of the GB model and BB model are discussed. The different inputs extrapolation has different results because each input's effectiveness in the system is different. The results are compared, and the best model is suggested among the models, ANN, SVR, first principle (FP)‐ANN serial structure, FP‐ANN parallel structure, FP‐SVR serial structure, and FP‐SVR parallel structure.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling a chemical plant using grey‐box models employing the support vector regression and artificial neural network\",\"authors\":\"Mahmood Ghasemi, Hooshang Jazayeri‐Rad, Reza Mosayebi Behbahani\",\"doi\":\"10.1002/cjce.25416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the performances of a nonlinear dynamic industrial process are examined using grey‐box (GB) models. To understand the dynamics of the system, the transient state is targeted. A white‐box (WB) model holds the prevailing knowledge using some assumptions. The performance of this model is limited. Artificial neural network (ANN) and support vector regression (SVR), which are techniques employed in numerous chemical engineering applications, are employed to construct the associated black‐box (BB) models. GA is used to optimize the SVR parameters. Dimensional and range extrapolations of different manipulated inputs, feed concentrations, feed temperatures, and cooling temperatures of the GB model and BB model are discussed. The different inputs extrapolation has different results because each input's effectiveness in the system is different. The results are compared, and the best model is suggested among the models, ANN, SVR, first principle (FP)‐ANN serial structure, FP‐ANN parallel structure, FP‐SVR serial structure, and FP‐SVR parallel structure.\",\"PeriodicalId\":501204,\"journal\":{\"name\":\"The Canadian Journal of Chemical Engineering\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cjce.25416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,使用灰盒(GB)模型对非线性动态工业流程的性能进行了研究。为了了解系统的动态,我们以瞬态为目标。白盒(WB)模型使用一些假设来保持现有知识。这种模型的性能有限。人工神经网络(ANN)和支持向量回归(SVR)是许多化学工程应用中采用的技术,被用来构建相关的黑箱(BB)模型。GA 用于优化 SVR 参数。讨论了 GB 模型和 BB 模型的不同操作输入、进料浓度、进料温度和冷却温度的维度和范围外推。不同输入的外推结果各不相同,因为每种输入在系统中的效果不同。对结果进行了比较,并提出了 ANN、SVR、第一原理(FP)-ANN 串行结构、FP-ANN 并行结构、FP-SVR 串行结构和 FP-SVR 并行结构等模型中的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling a chemical plant using grey‐box models employing the support vector regression and artificial neural network
In this work, the performances of a nonlinear dynamic industrial process are examined using grey‐box (GB) models. To understand the dynamics of the system, the transient state is targeted. A white‐box (WB) model holds the prevailing knowledge using some assumptions. The performance of this model is limited. Artificial neural network (ANN) and support vector regression (SVR), which are techniques employed in numerous chemical engineering applications, are employed to construct the associated black‐box (BB) models. GA is used to optimize the SVR parameters. Dimensional and range extrapolations of different manipulated inputs, feed concentrations, feed temperatures, and cooling temperatures of the GB model and BB model are discussed. The different inputs extrapolation has different results because each input's effectiveness in the system is different. The results are compared, and the best model is suggested among the models, ANN, SVR, first principle (FP)‐ANN serial structure, FP‐ANN parallel structure, FP‐SVR serial structure, and FP‐SVR parallel structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信