Aryasomayajula Venkata Satya Lakshmi Sai Bharadwaj, Jason Joseph Phillips, Janani Venkateshbabu, Gajendra Kammathanahalli Shivappa, Archana Venkatesh, Navneet Kumar Gupta
{"title":"在过氧化物催化剂作用下强化合成第一代和第二代生物燃料的小型综述","authors":"Aryasomayajula Venkata Satya Lakshmi Sai Bharadwaj, Jason Joseph Phillips, Janani Venkateshbabu, Gajendra Kammathanahalli Shivappa, Archana Venkatesh, Navneet Kumar Gupta","doi":"10.1002/cjce.25424","DOIUrl":null,"url":null,"abstract":"<p>Enhancement of a sustainable environment through the choice of a selective catalyst with high activity, regeneration nature, and high stability is an important aspect to be focused on to achieve a high yield and maximum conversion of feedstock to biodiesel (1st generation biofuel), and also in the biomass valorization/pyrolysis (2nd generation biofuel synthesis). Depending on the nature of the catalyst and synthesis method adopted for biofuel production and biomass valorization, the variations in the process conditions, final yield, and conversion are varied accordingly. A prospective development and application of perovskite catalysts in the synthesis of 1st and 2nd generation biofuels using various process intensification strategies for the development of a clean and green environment is reviewed in this study. The synthesis of types of perovskite catalysts polycrystalline, nano-sized, and powdered oxide are also discussed in this review. It is also concluded that, apart from other process parameters, molar ratio is one of the most influencing sensitive factors in the case of 1st generation biofuel synthesis, whereas during the production of 2nd generation biofuels, catalyst concentration and liquid–solid ratio are more significant process parameters that change based on the nature of the catalyst selected for the reaction.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 2","pages":"571-580"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mini-review of intensified synthesis of 1st and 2nd generation biofuels in the presence of perovskite catalysts\",\"authors\":\"Aryasomayajula Venkata Satya Lakshmi Sai Bharadwaj, Jason Joseph Phillips, Janani Venkateshbabu, Gajendra Kammathanahalli Shivappa, Archana Venkatesh, Navneet Kumar Gupta\",\"doi\":\"10.1002/cjce.25424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhancement of a sustainable environment through the choice of a selective catalyst with high activity, regeneration nature, and high stability is an important aspect to be focused on to achieve a high yield and maximum conversion of feedstock to biodiesel (1st generation biofuel), and also in the biomass valorization/pyrolysis (2nd generation biofuel synthesis). Depending on the nature of the catalyst and synthesis method adopted for biofuel production and biomass valorization, the variations in the process conditions, final yield, and conversion are varied accordingly. A prospective development and application of perovskite catalysts in the synthesis of 1st and 2nd generation biofuels using various process intensification strategies for the development of a clean and green environment is reviewed in this study. The synthesis of types of perovskite catalysts polycrystalline, nano-sized, and powdered oxide are also discussed in this review. It is also concluded that, apart from other process parameters, molar ratio is one of the most influencing sensitive factors in the case of 1st generation biofuel synthesis, whereas during the production of 2nd generation biofuels, catalyst concentration and liquid–solid ratio are more significant process parameters that change based on the nature of the catalyst selected for the reaction.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":\"103 2\",\"pages\":\"571-580\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25424\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25424","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A mini-review of intensified synthesis of 1st and 2nd generation biofuels in the presence of perovskite catalysts
Enhancement of a sustainable environment through the choice of a selective catalyst with high activity, regeneration nature, and high stability is an important aspect to be focused on to achieve a high yield and maximum conversion of feedstock to biodiesel (1st generation biofuel), and also in the biomass valorization/pyrolysis (2nd generation biofuel synthesis). Depending on the nature of the catalyst and synthesis method adopted for biofuel production and biomass valorization, the variations in the process conditions, final yield, and conversion are varied accordingly. A prospective development and application of perovskite catalysts in the synthesis of 1st and 2nd generation biofuels using various process intensification strategies for the development of a clean and green environment is reviewed in this study. The synthesis of types of perovskite catalysts polycrystalline, nano-sized, and powdered oxide are also discussed in this review. It is also concluded that, apart from other process parameters, molar ratio is one of the most influencing sensitive factors in the case of 1st generation biofuel synthesis, whereas during the production of 2nd generation biofuels, catalyst concentration and liquid–solid ratio are more significant process parameters that change based on the nature of the catalyst selected for the reaction.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.